Testing automated sensor traps for mammal field studies
Context. Live traps are regularly used in field and enclosure studies with mammals. In some scenarios, such as, for example, when the focus is on temporal patterns or to minimise the time animals are contained inside the trap for animal-ethics reasons, it can be highly useful to be alerted immediate...
Published in: | Wildlife Research |
---|---|
Main Authors: | , , , |
Format: | Text |
Language: | English |
Published: |
CSIRO Publishing
2017
|
Subjects: | |
Online Access: | https://doi.org/10.1071/WR16192 |
id |
ftbioone:10.1071/WR16192 |
---|---|
record_format |
openpolar |
spelling |
ftbioone:10.1071/WR16192 2024-06-02T08:10:26+00:00 Testing automated sensor traps for mammal field studies E. Notz C. Imholt D. Reil J. Jacob E. Notz C. Imholt D. Reil J. Jacob world 2017-03-07 text/HTML https://doi.org/10.1071/WR16192 en eng CSIRO Publishing doi:10.1071/WR16192 All rights reserved. https://doi.org/10.1071/WR16192 Text 2017 ftbioone https://doi.org/10.1071/WR16192 2024-05-07T00:50:12Z Context. Live traps are regularly used in field and enclosure studies with mammals. In some scenarios, such as, for example, when the focus is on temporal patterns or to minimise the time animals are contained inside the trap for animal-ethics reasons, it can be highly useful to be alerted immediately when an individual is trapped.Aims. In the present study, an automated system was trialed that is designed to automatically send a signal to a receiving device (pager, computer, mobile phone) when the body heat or movement of a trapped small mammal is registered by an infrared sensor (ERMINEA permanent monitoring system for rodent detection).Methods. Sensors were attached to Ugglan multiple-capture traps and used in laboratory conditions and in semi-natural outdoor enclosures with common voles (Microtus arvalis) and bank voles (Myodes glareolus), as well as in the field with bank voles, Apodemus species and common voles. Sensor readings were compared to visual observation and trapping results.Key results. In enclosure and field conditions, 100% and 98.7% of traps recorded captured animals correctly. There were no sensor signals when rodents moved along the outside or in the entrance compartment of the traps. Rodents sitting on the trap door triggered the sensor in 50% of cases when there was no bedding in the trap; however, there were no sensor signals if bedding was present. In laboratory trials, 20–70% of traps were falsely triggered by large insects (crickets), depending on ambient temperature and whether bedding was in the trap.Conclusions. Generally, the system was a reliable, flexible and easy-to-handle tool to monitor live captures. To minimise false negatives (animals trapped without signal), testing sensor function in the pre-baiting phase and software adjustments are recommended.Implications. The sensors are compatible with various trapping and other monitoring devices, providing the potential to be used in a wide range of applications. Their use is likely to optimise study designs, especially when ... Text Microtus arvalis BioOne Online Journals Wildlife Research 44 1 72 |
institution |
Open Polar |
collection |
BioOne Online Journals |
op_collection_id |
ftbioone |
language |
English |
description |
Context. Live traps are regularly used in field and enclosure studies with mammals. In some scenarios, such as, for example, when the focus is on temporal patterns or to minimise the time animals are contained inside the trap for animal-ethics reasons, it can be highly useful to be alerted immediately when an individual is trapped.Aims. In the present study, an automated system was trialed that is designed to automatically send a signal to a receiving device (pager, computer, mobile phone) when the body heat or movement of a trapped small mammal is registered by an infrared sensor (ERMINEA permanent monitoring system for rodent detection).Methods. Sensors were attached to Ugglan multiple-capture traps and used in laboratory conditions and in semi-natural outdoor enclosures with common voles (Microtus arvalis) and bank voles (Myodes glareolus), as well as in the field with bank voles, Apodemus species and common voles. Sensor readings were compared to visual observation and trapping results.Key results. In enclosure and field conditions, 100% and 98.7% of traps recorded captured animals correctly. There were no sensor signals when rodents moved along the outside or in the entrance compartment of the traps. Rodents sitting on the trap door triggered the sensor in 50% of cases when there was no bedding in the trap; however, there were no sensor signals if bedding was present. In laboratory trials, 20–70% of traps were falsely triggered by large insects (crickets), depending on ambient temperature and whether bedding was in the trap.Conclusions. Generally, the system was a reliable, flexible and easy-to-handle tool to monitor live captures. To minimise false negatives (animals trapped without signal), testing sensor function in the pre-baiting phase and software adjustments are recommended.Implications. The sensors are compatible with various trapping and other monitoring devices, providing the potential to be used in a wide range of applications. Their use is likely to optimise study designs, especially when ... |
author2 |
E. Notz C. Imholt D. Reil J. Jacob |
format |
Text |
author |
E. Notz C. Imholt D. Reil J. Jacob |
spellingShingle |
E. Notz C. Imholt D. Reil J. Jacob Testing automated sensor traps for mammal field studies |
author_facet |
E. Notz C. Imholt D. Reil J. Jacob |
author_sort |
E. Notz |
title |
Testing automated sensor traps for mammal field studies |
title_short |
Testing automated sensor traps for mammal field studies |
title_full |
Testing automated sensor traps for mammal field studies |
title_fullStr |
Testing automated sensor traps for mammal field studies |
title_full_unstemmed |
Testing automated sensor traps for mammal field studies |
title_sort |
testing automated sensor traps for mammal field studies |
publisher |
CSIRO Publishing |
publishDate |
2017 |
url |
https://doi.org/10.1071/WR16192 |
op_coverage |
world |
genre |
Microtus arvalis |
genre_facet |
Microtus arvalis |
op_source |
https://doi.org/10.1071/WR16192 |
op_relation |
doi:10.1071/WR16192 |
op_rights |
All rights reserved. |
op_doi |
https://doi.org/10.1071/WR16192 |
container_title |
Wildlife Research |
container_volume |
44 |
container_issue |
1 |
container_start_page |
72 |
_version_ |
1800756309471002624 |