Characterization of gene expression on genomic segment 7 of infectious salmon anaemia virus

Abstract Background Infectious salmon anaemia (ISA) virus (ISAV), an important pathogen of fish that causes disease accompanied by high mortality in marine-farmed Atlantic salmon, is the only species in the genus Isavirus , one of the five genera of the Orthomyxoviridae family. The Isavirus genome c...

Full description

Bibliographic Details
Main Authors: Kibenge, Frederick SB, Xu, Hongtao, Kibenge, Molly JT, Qian, Biao, Joseph, Tomy
Format: Other/Unknown Material
Language:English
Published: BioMed Central Ltd. 2007
Subjects:
Online Access:http://www.virologyj.com/content/4/1/34
id ftbiomed:oai:biomedcentral.com:1743-422X-4-34
record_format openpolar
spelling ftbiomed:oai:biomedcentral.com:1743-422X-4-34 2023-05-15T15:32:27+02:00 Characterization of gene expression on genomic segment 7 of infectious salmon anaemia virus Kibenge, Frederick SB Xu, Hongtao Kibenge, Molly JT Qian, Biao Joseph, Tomy 2007-03-29 http://www.virologyj.com/content/4/1/34 en eng BioMed Central Ltd. http://www.virologyj.com/content/4/1/34 Copyright 2007 Kibenge et al; licensee BioMed Central Ltd. Research 2007 ftbiomed 2007-11-11T15:26:03Z Abstract Background Infectious salmon anaemia (ISA) virus (ISAV), an important pathogen of fish that causes disease accompanied by high mortality in marine-farmed Atlantic salmon, is the only species in the genus Isavirus , one of the five genera of the Orthomyxoviridae family. The Isavirus genome consists of eight single-stranded RNA species, and the virions have two surface glycoproteins; haemagglutinin-esterase (HE) protein encoded on segment 6 and fusion (F) protein encoded on segment 5. Based on the initial demonstration of two 5'-coterminal mRNA transcripts by RT-PCR, ISAV genomic segment 7 was suggested to share a similar coding strategy with segment 7 of influenza A virus, encoding two proteins. However, there appears to be confusion as to the protein sizes predicted from the two open reading frames (ORFs) of ISAV segment 7 which has in turn led to confusion of the predicted protein functions. The primary goal of the present work was to clone and express these two ORFs in order to assess whether the predicted protein sizes match those of the expressed proteins so as to clarify the coding assignments, and thereby identify any additional structural proteins of ISAV. Results In the present study we show that ISAV segment 7 encodes 3 proteins with estimated molecular masses of 32, 18, and 9.5 kDa. The 18-kDa and 9.5-kDa products are based on removal of an intron each from the primary transcript (7-ORF1) so that the translation continues in the +2 and +3 reading frames, respectively. The segment 7-ORF1/3 product is variably truncated in the sequence of ISAV isolates of the European genotype. All three proteins are recognized by rabbit antiserum against the 32-kDa product of the primary transcript, as they all share the N-terminal 22 amino acids. This antiserum detected a single 35-kDa protein in Western blots of purified virus, and immunoprecipitated a 32-kDa protein in ISAV-infected TO cells. Immunofluorescence staining of infected cells with the same antiserum revealed the protein(s) to be localized in the cytoplasm. Vaccination of farmed Atlantic salmon with the 32-kDa protein resulted in a higher survival rate than what was attainable with the HE protein, albeit a moderate protection against the low ISAV challenge. Conclusion Collectively, our observations suggest that the product of ISAV segment 7 primary transcript (7-ORF1) is a structural protein. The 18-kDa (7-ORF1/2) protein is identified as the putative ISAV nuclear export protein based on the presence of nuclear export signals. The function of the 9.5-kDa (7-ORF1/3) protein is not presently known. Other/Unknown Material Atlantic salmon BioMed Central
institution Open Polar
collection BioMed Central
op_collection_id ftbiomed
language English
description Abstract Background Infectious salmon anaemia (ISA) virus (ISAV), an important pathogen of fish that causes disease accompanied by high mortality in marine-farmed Atlantic salmon, is the only species in the genus Isavirus , one of the five genera of the Orthomyxoviridae family. The Isavirus genome consists of eight single-stranded RNA species, and the virions have two surface glycoproteins; haemagglutinin-esterase (HE) protein encoded on segment 6 and fusion (F) protein encoded on segment 5. Based on the initial demonstration of two 5'-coterminal mRNA transcripts by RT-PCR, ISAV genomic segment 7 was suggested to share a similar coding strategy with segment 7 of influenza A virus, encoding two proteins. However, there appears to be confusion as to the protein sizes predicted from the two open reading frames (ORFs) of ISAV segment 7 which has in turn led to confusion of the predicted protein functions. The primary goal of the present work was to clone and express these two ORFs in order to assess whether the predicted protein sizes match those of the expressed proteins so as to clarify the coding assignments, and thereby identify any additional structural proteins of ISAV. Results In the present study we show that ISAV segment 7 encodes 3 proteins with estimated molecular masses of 32, 18, and 9.5 kDa. The 18-kDa and 9.5-kDa products are based on removal of an intron each from the primary transcript (7-ORF1) so that the translation continues in the +2 and +3 reading frames, respectively. The segment 7-ORF1/3 product is variably truncated in the sequence of ISAV isolates of the European genotype. All three proteins are recognized by rabbit antiserum against the 32-kDa product of the primary transcript, as they all share the N-terminal 22 amino acids. This antiserum detected a single 35-kDa protein in Western blots of purified virus, and immunoprecipitated a 32-kDa protein in ISAV-infected TO cells. Immunofluorescence staining of infected cells with the same antiserum revealed the protein(s) to be localized in the cytoplasm. Vaccination of farmed Atlantic salmon with the 32-kDa protein resulted in a higher survival rate than what was attainable with the HE protein, albeit a moderate protection against the low ISAV challenge. Conclusion Collectively, our observations suggest that the product of ISAV segment 7 primary transcript (7-ORF1) is a structural protein. The 18-kDa (7-ORF1/2) protein is identified as the putative ISAV nuclear export protein based on the presence of nuclear export signals. The function of the 9.5-kDa (7-ORF1/3) protein is not presently known.
format Other/Unknown Material
author Kibenge, Frederick SB
Xu, Hongtao
Kibenge, Molly JT
Qian, Biao
Joseph, Tomy
spellingShingle Kibenge, Frederick SB
Xu, Hongtao
Kibenge, Molly JT
Qian, Biao
Joseph, Tomy
Characterization of gene expression on genomic segment 7 of infectious salmon anaemia virus
author_facet Kibenge, Frederick SB
Xu, Hongtao
Kibenge, Molly JT
Qian, Biao
Joseph, Tomy
author_sort Kibenge, Frederick SB
title Characterization of gene expression on genomic segment 7 of infectious salmon anaemia virus
title_short Characterization of gene expression on genomic segment 7 of infectious salmon anaemia virus
title_full Characterization of gene expression on genomic segment 7 of infectious salmon anaemia virus
title_fullStr Characterization of gene expression on genomic segment 7 of infectious salmon anaemia virus
title_full_unstemmed Characterization of gene expression on genomic segment 7 of infectious salmon anaemia virus
title_sort characterization of gene expression on genomic segment 7 of infectious salmon anaemia virus
publisher BioMed Central Ltd.
publishDate 2007
url http://www.virologyj.com/content/4/1/34
genre Atlantic salmon
genre_facet Atlantic salmon
op_relation http://www.virologyj.com/content/4/1/34
op_rights Copyright 2007 Kibenge et al; licensee BioMed Central Ltd.
_version_ 1766362945252491264