From chemical gardens to chemobrionics

Chemical gardens in laboratory chemistries ranging from silicates to polyoxometalates, in applications ranging from corrosion products to the hydration of Portland cement, and in natural settings ranging from hydrothermal vents in the ocean depths to brinicles beneath sea ice. In many chemical-garde...

Full description

Bibliographic Details
Published in:Chemical Reviews
Main Authors: Barge, L.M., Cardoso, S.S.S., Cartwright, J.H.E., Cooper, G.J.T., Cronin, L., de Wit, A., Doloboff, I.J., Escribano, B., Goldstein, R.E., Haudin, F., Jones, D.E.H., Mackay, A.L., Maselko, J., Pagano, J.J., Pantaleone, J., Russell, M.J., Sainz-Díaz, C.I., Steinbock, O., Stone, D.A., Tanimoto, Y., Thomas, N.
Format: Article in Journal/Newspaper
Language:English
Published: 2015
Subjects:
Online Access:https://hdl.handle.net/20.500.11824/172
https://doi.org/10.1021/acs.chemrev.5b00014
id ftbcam:oai:bird.bcamath.org:20.500.11824/172
record_format openpolar
spelling ftbcam:oai:bird.bcamath.org:20.500.11824/172 2023-06-11T04:16:35+02:00 From chemical gardens to chemobrionics Barge, L.M. Cardoso, S.S.S. Cartwright, J.H.E. Cooper, G.J.T. Cronin, L. de Wit, A. Doloboff, I.J. Escribano, B. Goldstein, R.E. Haudin, F. Jones, D.E.H. Mackay, A.L. Maselko, J. Pagano, J.J. Pantaleone, J. Russell, M.J. Sainz-Díaz, C.I. Steinbock, O. Stone, D.A. Tanimoto, Y. Thomas, N. 2015-12-31 application/pdf https://hdl.handle.net/20.500.11824/172 https://doi.org/10.1021/acs.chemrev.5b00014 eng eng http://pubs.acs.org/doi/10.1021/acs.chemrev.5b00014 0009-2665 http://hdl.handle.net/20.500.11824/172 doi:10.1021/acs.chemrev.5b00014 Reconocimiento-NoComercial-CompartirIgual 3.0 España http://creativecommons.org/licenses/by-nc-sa/3.0/es/ info:eu-repo/semantics/openAccess info:eu-repo/semantics/article info:eu-repo/semantics/acceptedVersion 2015 ftbcam https://doi.org/20.500.11824/17210.1021/acs.chemrev.5b00014 2023-04-25T23:49:10Z Chemical gardens in laboratory chemistries ranging from silicates to polyoxometalates, in applications ranging from corrosion products to the hydration of Portland cement, and in natural settings ranging from hydrothermal vents in the ocean depths to brinicles beneath sea ice. In many chemical-garden experiments, the structure forms as a solid seed of a soluble ionic compound dissolves in a solution containing another reactive ion. In general any alkali silicate solution can be used due to their high solubility at high pH. The cation should not precipitate with the counterion of the metal salt used as seed. A main property of seed chemical-garden experiments is that initially, when the fluid is not moving under buoyancy or osmosis, the delivery of the inner reactant is diffusion controlled. Another experimental technique that isolates one aspect of chemical-garden formation is to produce precipitation membranes between different aqueous solutions by introducing the two solutions on either side of an inert carrier matrix. Chemical gardens may be grown upon injection of solutions into a so-called Hele-Shaw cell, a quasi-two-dimensional reactor consisting in two parallel plates separated by a small gap. Article in Journal/Newspaper Sea ice BIRD - BCAM's Institutional Repository Data (Basque Center for Applied Mathematics) Chemical Reviews 115 16 8652 8703
institution Open Polar
collection BIRD - BCAM's Institutional Repository Data (Basque Center for Applied Mathematics)
op_collection_id ftbcam
language English
description Chemical gardens in laboratory chemistries ranging from silicates to polyoxometalates, in applications ranging from corrosion products to the hydration of Portland cement, and in natural settings ranging from hydrothermal vents in the ocean depths to brinicles beneath sea ice. In many chemical-garden experiments, the structure forms as a solid seed of a soluble ionic compound dissolves in a solution containing another reactive ion. In general any alkali silicate solution can be used due to their high solubility at high pH. The cation should not precipitate with the counterion of the metal salt used as seed. A main property of seed chemical-garden experiments is that initially, when the fluid is not moving under buoyancy or osmosis, the delivery of the inner reactant is diffusion controlled. Another experimental technique that isolates one aspect of chemical-garden formation is to produce precipitation membranes between different aqueous solutions by introducing the two solutions on either side of an inert carrier matrix. Chemical gardens may be grown upon injection of solutions into a so-called Hele-Shaw cell, a quasi-two-dimensional reactor consisting in two parallel plates separated by a small gap.
format Article in Journal/Newspaper
author Barge, L.M.
Cardoso, S.S.S.
Cartwright, J.H.E.
Cooper, G.J.T.
Cronin, L.
de Wit, A.
Doloboff, I.J.
Escribano, B.
Goldstein, R.E.
Haudin, F.
Jones, D.E.H.
Mackay, A.L.
Maselko, J.
Pagano, J.J.
Pantaleone, J.
Russell, M.J.
Sainz-Díaz, C.I.
Steinbock, O.
Stone, D.A.
Tanimoto, Y.
Thomas, N.
spellingShingle Barge, L.M.
Cardoso, S.S.S.
Cartwright, J.H.E.
Cooper, G.J.T.
Cronin, L.
de Wit, A.
Doloboff, I.J.
Escribano, B.
Goldstein, R.E.
Haudin, F.
Jones, D.E.H.
Mackay, A.L.
Maselko, J.
Pagano, J.J.
Pantaleone, J.
Russell, M.J.
Sainz-Díaz, C.I.
Steinbock, O.
Stone, D.A.
Tanimoto, Y.
Thomas, N.
From chemical gardens to chemobrionics
author_facet Barge, L.M.
Cardoso, S.S.S.
Cartwright, J.H.E.
Cooper, G.J.T.
Cronin, L.
de Wit, A.
Doloboff, I.J.
Escribano, B.
Goldstein, R.E.
Haudin, F.
Jones, D.E.H.
Mackay, A.L.
Maselko, J.
Pagano, J.J.
Pantaleone, J.
Russell, M.J.
Sainz-Díaz, C.I.
Steinbock, O.
Stone, D.A.
Tanimoto, Y.
Thomas, N.
author_sort Barge, L.M.
title From chemical gardens to chemobrionics
title_short From chemical gardens to chemobrionics
title_full From chemical gardens to chemobrionics
title_fullStr From chemical gardens to chemobrionics
title_full_unstemmed From chemical gardens to chemobrionics
title_sort from chemical gardens to chemobrionics
publishDate 2015
url https://hdl.handle.net/20.500.11824/172
https://doi.org/10.1021/acs.chemrev.5b00014
genre Sea ice
genre_facet Sea ice
op_relation http://pubs.acs.org/doi/10.1021/acs.chemrev.5b00014
0009-2665
http://hdl.handle.net/20.500.11824/172
doi:10.1021/acs.chemrev.5b00014
op_rights Reconocimiento-NoComercial-CompartirIgual 3.0 España
http://creativecommons.org/licenses/by-nc-sa/3.0/es/
info:eu-repo/semantics/openAccess
op_doi https://doi.org/20.500.11824/17210.1021/acs.chemrev.5b00014
container_title Chemical Reviews
container_volume 115
container_issue 16
container_start_page 8652
op_container_end_page 8703
_version_ 1768374971660238848