Estimation of Arctic polar vortex ozone loss during the winter of 1999/2000 using vortex-averaged airborne differential absorption lidar ozone measurements referenced to N2O isopleths

The NASA Langley UV differential absorption lidar (DIAL) system flew on the NASA DC-8 aircraft during the Stratospheric Aerosol and Gas Experiment (SAGE) III Ozone Loss and Validation Experiment/Third European Stratospheric Experiment on Ozone 2000 (SOLVE/THESEO 2000) mission from 30 November 1999 t...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research
Main Authors: Grant, W. B., Browell, E. V., Butler, C. F., Gibson, S. C., Kooi, S. A., von der Gathen, Peter
Format: Article in Journal/Newspaper
Language:unknown
Published: 2003
Subjects:
Online Access:https://epic.awi.de/id/eprint/6973/
https://doi.org/10.1029/2002JD002668
https://hdl.handle.net/10013/epic.17519
id ftawi:oai:epic.awi.de:6973
record_format openpolar
spelling ftawi:oai:epic.awi.de:6973 2023-09-05T13:15:55+02:00 Estimation of Arctic polar vortex ozone loss during the winter of 1999/2000 using vortex-averaged airborne differential absorption lidar ozone measurements referenced to N2O isopleths Grant, W. B. Browell, E. V. Butler, C. F. Gibson, S. C. Kooi, S. A. von der Gathen, Peter 2003 https://epic.awi.de/id/eprint/6973/ https://doi.org/10.1029/2002JD002668 https://hdl.handle.net/10013/epic.17519 unknown Grant, W. B. , Browell, E. V. , Butler, C. F. , Gibson, S. C. , Kooi, S. A. and von der Gathen, P. orcid:0000-0001-7409-1556 (2003) Estimation of Arctic polar vortex ozone loss during the winter of 1999/2000 using vortex-averaged airborne differential absorption lidar ozone measurements referenced to N2O isopleths , Journal of Geophysical ResearchD10), 108 . doi:10.1029/2002JD002668 <https://doi.org/10.1029/2002JD002668> , hdl:10013/epic.17519 EPIC3Journal of Geophysical ResearchD10), 108, 4309 p., ISSN: 0148-0227 Article isiRev 2003 ftawi https://doi.org/10.1029/2002JD002668 2023-08-22T19:46:28Z The NASA Langley UV differential absorption lidar (DIAL) system flew on the NASA DC-8 aircraft during the Stratospheric Aerosol and Gas Experiment (SAGE) III Ozone Loss and Validation Experiment/Third European Stratospheric Experiment on Ozone 2000 (SOLVE/THESEO 2000) mission from 30 November 1999 to 15 March 2000. The UV DIAL system measured ozone (O3) profiles at altitudes from about 1 km above the aircraft up to about 26 km with a vertical resolution of 750 m and a horizontal resolution of 70 km below 19 km and 140 km above 19 km. In comparison with electrochemical concentration cell ozonesonde profiles, the UV DIAL O3 measurements agreed to within 5% up to 20 km and 10% from 20 to 25 km. Ozone loss during the season was determined using the UV DIAL O3 data along with air mass subsidence determined using N2O as a conservative tracer at five levels from 50 to 250 ppbv [Greenblatt et al., 2002]. O3 mixing ratios were determined inside the polar vortex, away from the collar region along these five levels during the mission. The maximum O3 loss determined from 30 November to 12 March was 1.55 ± 0.3 ppmv at the 440-450 K potential temperature (theta) level, while the loss there between 20 January and 15 March was 1.3 ± 0.3 ppmv. These results are comparable to many of the other reported losses for these periods, but lower than several. Some of the determinations of higher losses used a different method to determine descent during the season. These results indicate that a series of vertical profiles of O3 that sample much of the vortex during the winter, along with determinations of the descent of air masses inside the vortex, can give a reasonable estimate of the O3 changes during the season. Article in Journal/Newspaper Arctic Arctic Alfred Wegener Institute for Polar- and Marine Research (AWI): ePIC (electronic Publication Information Center) Arctic Journal of Geophysical Research 108 D10
institution Open Polar
collection Alfred Wegener Institute for Polar- and Marine Research (AWI): ePIC (electronic Publication Information Center)
op_collection_id ftawi
language unknown
description The NASA Langley UV differential absorption lidar (DIAL) system flew on the NASA DC-8 aircraft during the Stratospheric Aerosol and Gas Experiment (SAGE) III Ozone Loss and Validation Experiment/Third European Stratospheric Experiment on Ozone 2000 (SOLVE/THESEO 2000) mission from 30 November 1999 to 15 March 2000. The UV DIAL system measured ozone (O3) profiles at altitudes from about 1 km above the aircraft up to about 26 km with a vertical resolution of 750 m and a horizontal resolution of 70 km below 19 km and 140 km above 19 km. In comparison with electrochemical concentration cell ozonesonde profiles, the UV DIAL O3 measurements agreed to within 5% up to 20 km and 10% from 20 to 25 km. Ozone loss during the season was determined using the UV DIAL O3 data along with air mass subsidence determined using N2O as a conservative tracer at five levels from 50 to 250 ppbv [Greenblatt et al., 2002]. O3 mixing ratios were determined inside the polar vortex, away from the collar region along these five levels during the mission. The maximum O3 loss determined from 30 November to 12 March was 1.55 ± 0.3 ppmv at the 440-450 K potential temperature (theta) level, while the loss there between 20 January and 15 March was 1.3 ± 0.3 ppmv. These results are comparable to many of the other reported losses for these periods, but lower than several. Some of the determinations of higher losses used a different method to determine descent during the season. These results indicate that a series of vertical profiles of O3 that sample much of the vortex during the winter, along with determinations of the descent of air masses inside the vortex, can give a reasonable estimate of the O3 changes during the season.
format Article in Journal/Newspaper
author Grant, W. B.
Browell, E. V.
Butler, C. F.
Gibson, S. C.
Kooi, S. A.
von der Gathen, Peter
spellingShingle Grant, W. B.
Browell, E. V.
Butler, C. F.
Gibson, S. C.
Kooi, S. A.
von der Gathen, Peter
Estimation of Arctic polar vortex ozone loss during the winter of 1999/2000 using vortex-averaged airborne differential absorption lidar ozone measurements referenced to N2O isopleths
author_facet Grant, W. B.
Browell, E. V.
Butler, C. F.
Gibson, S. C.
Kooi, S. A.
von der Gathen, Peter
author_sort Grant, W. B.
title Estimation of Arctic polar vortex ozone loss during the winter of 1999/2000 using vortex-averaged airborne differential absorption lidar ozone measurements referenced to N2O isopleths
title_short Estimation of Arctic polar vortex ozone loss during the winter of 1999/2000 using vortex-averaged airborne differential absorption lidar ozone measurements referenced to N2O isopleths
title_full Estimation of Arctic polar vortex ozone loss during the winter of 1999/2000 using vortex-averaged airborne differential absorption lidar ozone measurements referenced to N2O isopleths
title_fullStr Estimation of Arctic polar vortex ozone loss during the winter of 1999/2000 using vortex-averaged airborne differential absorption lidar ozone measurements referenced to N2O isopleths
title_full_unstemmed Estimation of Arctic polar vortex ozone loss during the winter of 1999/2000 using vortex-averaged airborne differential absorption lidar ozone measurements referenced to N2O isopleths
title_sort estimation of arctic polar vortex ozone loss during the winter of 1999/2000 using vortex-averaged airborne differential absorption lidar ozone measurements referenced to n2o isopleths
publishDate 2003
url https://epic.awi.de/id/eprint/6973/
https://doi.org/10.1029/2002JD002668
https://hdl.handle.net/10013/epic.17519
geographic Arctic
geographic_facet Arctic
genre Arctic
Arctic
genre_facet Arctic
Arctic
op_source EPIC3Journal of Geophysical ResearchD10), 108, 4309 p., ISSN: 0148-0227
op_relation Grant, W. B. , Browell, E. V. , Butler, C. F. , Gibson, S. C. , Kooi, S. A. and von der Gathen, P. orcid:0000-0001-7409-1556 (2003) Estimation of Arctic polar vortex ozone loss during the winter of 1999/2000 using vortex-averaged airborne differential absorption lidar ozone measurements referenced to N2O isopleths , Journal of Geophysical ResearchD10), 108 . doi:10.1029/2002JD002668 <https://doi.org/10.1029/2002JD002668> , hdl:10013/epic.17519
op_doi https://doi.org/10.1029/2002JD002668
container_title Journal of Geophysical Research
container_volume 108
container_issue D10
_version_ 1776197714895175680