Stabilization of mineral-associated organic carbon in Pleistocene permafrost

Ice-rich Pleistocene-age permafrost is particularly vulnerable to rapid thaw, which may quickly expose a large pool of sedimentary organic matter (OM) to microbial degradation and lead to emissions of climate-sensitive greenhouse gases. Protective physico-chemical mechanisms may, however, restrict m...

Full description

Bibliographic Details
Published in:Nature Communications
Main Authors: Martens, Jannik, Mueller, Carsten W, Joshi, Prachi, Rosinger, Christoph, Maisch, Markus, Kappler, Andreas, Bonkowski, Michael, Schwamborn, Georg, Schirrmeister, Lutz, Rethemeyer, Janet
Format: Article in Journal/Newspaper
Language:unknown
Published: Springer Nature 2023
Subjects:
Ice
Online Access:https://epic.awi.de/id/eprint/57709/
https://epic.awi.de/id/eprint/57709/1/Martens_et_al_2023_nature_comm.pdf
https://hdl.handle.net/10013/epic.27a82ef6-d35f-4aeb-b61a-ca5017bb701c
id ftawi:oai:epic.awi.de:57709
record_format openpolar
spelling ftawi:oai:epic.awi.de:57709 2023-06-11T04:12:33+02:00 Stabilization of mineral-associated organic carbon in Pleistocene permafrost Martens, Jannik Mueller, Carsten W Joshi, Prachi Rosinger, Christoph Maisch, Markus Kappler, Andreas Bonkowski, Michael Schwamborn, Georg Schirrmeister, Lutz Rethemeyer, Janet 2023-04-13 application/pdf https://epic.awi.de/id/eprint/57709/ https://epic.awi.de/id/eprint/57709/1/Martens_et_al_2023_nature_comm.pdf https://hdl.handle.net/10013/epic.27a82ef6-d35f-4aeb-b61a-ca5017bb701c unknown Springer Nature https://epic.awi.de/id/eprint/57709/1/Martens_et_al_2023_nature_comm.pdf Martens, J. , Mueller, C. W. , Joshi, P. , Rosinger, C. , Maisch, M. , Kappler, A. , Bonkowski, M. , Schwamborn, G. , Schirrmeister, L. and Rethemeyer, J. (2023) Stabilization of mineral-associated organic carbon in Pleistocene permafrost , Nature Communications, 14 . doi:10.1038/s41467-023-37766-5 <https://doi.org/10.1038/s41467-023-37766-5> , hdl:10013/epic.27a82ef6-d35f-4aeb-b61a-ca5017bb701c EPIC3Nature Communications, Springer Nature, 14, 8 p., ISSN: 2041-1723 Article isiRev 2023 ftawi https://doi.org/10.1038/s41467-023-37766-5 2023-04-23T23:18:38Z Ice-rich Pleistocene-age permafrost is particularly vulnerable to rapid thaw, which may quickly expose a large pool of sedimentary organic matter (OM) to microbial degradation and lead to emissions of climate-sensitive greenhouse gases. Protective physico-chemical mechanisms may, however, restrict microbial accessibility and reduce OM decomposition; mechanisms that may be influenced by changing environmental conditions during sediment deposition. Here we study different OM fractions in Siberian permafrost deposited during colder and warmer periods of the past 55,000 years. Among known stabilization mechanisms, the occlusion of OMin aggregates is of minor importance, while 33-74% of the organic carbon is associated with small, <6.3 μm mineral particles. Preservation of carbon in mineral-associated OM is enhanced by reactive iron minerals particularly during cold and dry climate, reflected by low microbial CO2 production in incubation experiments. Warmer and wetter conditions reduce OM stabilization, shown by more decomposed mineral-associated OM and up to 30% higher CO2 production. This shows that considering the stability and bioavailability of Pleistocene-age permafrost carbon is important for predicting future climate-carbon feedback. Article in Journal/Newspaper Ice permafrost Alfred Wegener Institute for Polar- and Marine Research (AWI): ePIC (electronic Publication Information Center) Nature Communications 14 1
institution Open Polar
collection Alfred Wegener Institute for Polar- and Marine Research (AWI): ePIC (electronic Publication Information Center)
op_collection_id ftawi
language unknown
description Ice-rich Pleistocene-age permafrost is particularly vulnerable to rapid thaw, which may quickly expose a large pool of sedimentary organic matter (OM) to microbial degradation and lead to emissions of climate-sensitive greenhouse gases. Protective physico-chemical mechanisms may, however, restrict microbial accessibility and reduce OM decomposition; mechanisms that may be influenced by changing environmental conditions during sediment deposition. Here we study different OM fractions in Siberian permafrost deposited during colder and warmer periods of the past 55,000 years. Among known stabilization mechanisms, the occlusion of OMin aggregates is of minor importance, while 33-74% of the organic carbon is associated with small, <6.3 μm mineral particles. Preservation of carbon in mineral-associated OM is enhanced by reactive iron minerals particularly during cold and dry climate, reflected by low microbial CO2 production in incubation experiments. Warmer and wetter conditions reduce OM stabilization, shown by more decomposed mineral-associated OM and up to 30% higher CO2 production. This shows that considering the stability and bioavailability of Pleistocene-age permafrost carbon is important for predicting future climate-carbon feedback.
format Article in Journal/Newspaper
author Martens, Jannik
Mueller, Carsten W
Joshi, Prachi
Rosinger, Christoph
Maisch, Markus
Kappler, Andreas
Bonkowski, Michael
Schwamborn, Georg
Schirrmeister, Lutz
Rethemeyer, Janet
spellingShingle Martens, Jannik
Mueller, Carsten W
Joshi, Prachi
Rosinger, Christoph
Maisch, Markus
Kappler, Andreas
Bonkowski, Michael
Schwamborn, Georg
Schirrmeister, Lutz
Rethemeyer, Janet
Stabilization of mineral-associated organic carbon in Pleistocene permafrost
author_facet Martens, Jannik
Mueller, Carsten W
Joshi, Prachi
Rosinger, Christoph
Maisch, Markus
Kappler, Andreas
Bonkowski, Michael
Schwamborn, Georg
Schirrmeister, Lutz
Rethemeyer, Janet
author_sort Martens, Jannik
title Stabilization of mineral-associated organic carbon in Pleistocene permafrost
title_short Stabilization of mineral-associated organic carbon in Pleistocene permafrost
title_full Stabilization of mineral-associated organic carbon in Pleistocene permafrost
title_fullStr Stabilization of mineral-associated organic carbon in Pleistocene permafrost
title_full_unstemmed Stabilization of mineral-associated organic carbon in Pleistocene permafrost
title_sort stabilization of mineral-associated organic carbon in pleistocene permafrost
publisher Springer Nature
publishDate 2023
url https://epic.awi.de/id/eprint/57709/
https://epic.awi.de/id/eprint/57709/1/Martens_et_al_2023_nature_comm.pdf
https://hdl.handle.net/10013/epic.27a82ef6-d35f-4aeb-b61a-ca5017bb701c
genre Ice
permafrost
genre_facet Ice
permafrost
op_source EPIC3Nature Communications, Springer Nature, 14, 8 p., ISSN: 2041-1723
op_relation https://epic.awi.de/id/eprint/57709/1/Martens_et_al_2023_nature_comm.pdf
Martens, J. , Mueller, C. W. , Joshi, P. , Rosinger, C. , Maisch, M. , Kappler, A. , Bonkowski, M. , Schwamborn, G. , Schirrmeister, L. and Rethemeyer, J. (2023) Stabilization of mineral-associated organic carbon in Pleistocene permafrost , Nature Communications, 14 . doi:10.1038/s41467-023-37766-5 <https://doi.org/10.1038/s41467-023-37766-5> , hdl:10013/epic.27a82ef6-d35f-4aeb-b61a-ca5017bb701c
op_doi https://doi.org/10.1038/s41467-023-37766-5
container_title Nature Communications
container_volume 14
container_issue 1
_version_ 1768388485826215936