Range expansions of scyphozoan jellyfish - the case study of Periphylla periphylla and Cyanea capillata

Jellyfish have been hypothesized to thrive as winners of climate change. Abundances of several jellyfish species are expected to grow, and this could be particularly the case in areas of rapid change, such as the warming Arctic waters. Despite the increased number of reported jellyfish blooms and th...

Full description

Bibliographic Details
Main Author: Steiner, Niko
Format: Thesis
Language:unknown
Published: 2022
Subjects:
Online Access:https://epic.awi.de/id/eprint/57234/
https://epic.awi.de/id/eprint/57234/1/MScThesis_Niko_Steiner.pdf
https://hdl.handle.net/10013/epic.7b188b16-16a1-4a70-a45f-9e20f9549902
id ftawi:oai:epic.awi.de:57234
record_format openpolar
spelling ftawi:oai:epic.awi.de:57234 2024-02-04T09:58:05+01:00 Range expansions of scyphozoan jellyfish - the case study of Periphylla periphylla and Cyanea capillata Steiner, Niko 2022-08-03 application/pdf https://epic.awi.de/id/eprint/57234/ https://epic.awi.de/id/eprint/57234/1/MScThesis_Niko_Steiner.pdf https://hdl.handle.net/10013/epic.7b188b16-16a1-4a70-a45f-9e20f9549902 unknown https://epic.awi.de/id/eprint/57234/1/MScThesis_Niko_Steiner.pdf Steiner, N. (2022) Range expansions of scyphozoan jellyfish - the case study of Periphylla periphylla and Cyanea capillata , Master thesis, University of Bremen. hdl:10013/epic.7b188b16-16a1-4a70-a45f-9e20f9549902 EPIC374 p. Thesis notRev 2022 ftawi 2024-01-08T00:23:12Z Jellyfish have been hypothesized to thrive as winners of climate change. Abundances of several jellyfish species are expected to grow, and this could be particularly the case in areas of rapid change, such as the warming Arctic waters. Despite the increased number of reported jellyfish blooms and their negative effects on fisheries worldwide, jellyfish remain an understudied part of zooplankton due to their fragility and their reputation as "trophic dead end". This study aims to investigate the two scyphozoan jellyfish species Periphylla periphylla and Cyanea capillata, both of which hypothesized to expand their distribution ranges poleward. The analysis consists of three parts: first, the intraspecific diversity of the two species was investigated using DNA barcoding of samples from Svalbard, Greenland, and Norway. Second, to characterize the status quo of high-Arctic jellyfish species diversity, we applied eDNA metabarcoding of sediment samples around Svalbard. Moreover, the efficiency of this method to reveal pelagic communities was compared with net catches in the same stations. Lastly, species-specific primers were developed and tested, with the future aim to optimize quantitative real-time PCR as a cost-effective and accurate tool for detecting the target species from environmental samples. The study revealed a high intraspecific genetic diversity and a lack of geographic structure in both species. C. capillata was shown to consist of three species-level lineages with overlapping distributions, and the cluster identified as C. capillata showed a higher genetic diversity than P. periphylla. We discussed these patterns of genetic diversity in the light of the life cycles of both species. The metazoan species diversity revealed with the metabarcoding analyses of the Svalbard sediment samples did not represent the pelagic community well, compared to net and trawl catches from the same stations. Many of the zooplankton and especially jellyfish species caught with nets were not represented in the eDNA. Overall, ... Thesis Arctic Climate change Greenland Svalbard Zooplankton Alfred Wegener Institute for Polar- and Marine Research (AWI): ePIC (electronic Publication Information Center) Arctic Greenland Norway Svalbard
institution Open Polar
collection Alfred Wegener Institute for Polar- and Marine Research (AWI): ePIC (electronic Publication Information Center)
op_collection_id ftawi
language unknown
description Jellyfish have been hypothesized to thrive as winners of climate change. Abundances of several jellyfish species are expected to grow, and this could be particularly the case in areas of rapid change, such as the warming Arctic waters. Despite the increased number of reported jellyfish blooms and their negative effects on fisheries worldwide, jellyfish remain an understudied part of zooplankton due to their fragility and their reputation as "trophic dead end". This study aims to investigate the two scyphozoan jellyfish species Periphylla periphylla and Cyanea capillata, both of which hypothesized to expand their distribution ranges poleward. The analysis consists of three parts: first, the intraspecific diversity of the two species was investigated using DNA barcoding of samples from Svalbard, Greenland, and Norway. Second, to characterize the status quo of high-Arctic jellyfish species diversity, we applied eDNA metabarcoding of sediment samples around Svalbard. Moreover, the efficiency of this method to reveal pelagic communities was compared with net catches in the same stations. Lastly, species-specific primers were developed and tested, with the future aim to optimize quantitative real-time PCR as a cost-effective and accurate tool for detecting the target species from environmental samples. The study revealed a high intraspecific genetic diversity and a lack of geographic structure in both species. C. capillata was shown to consist of three species-level lineages with overlapping distributions, and the cluster identified as C. capillata showed a higher genetic diversity than P. periphylla. We discussed these patterns of genetic diversity in the light of the life cycles of both species. The metazoan species diversity revealed with the metabarcoding analyses of the Svalbard sediment samples did not represent the pelagic community well, compared to net and trawl catches from the same stations. Many of the zooplankton and especially jellyfish species caught with nets were not represented in the eDNA. Overall, ...
format Thesis
author Steiner, Niko
spellingShingle Steiner, Niko
Range expansions of scyphozoan jellyfish - the case study of Periphylla periphylla and Cyanea capillata
author_facet Steiner, Niko
author_sort Steiner, Niko
title Range expansions of scyphozoan jellyfish - the case study of Periphylla periphylla and Cyanea capillata
title_short Range expansions of scyphozoan jellyfish - the case study of Periphylla periphylla and Cyanea capillata
title_full Range expansions of scyphozoan jellyfish - the case study of Periphylla periphylla and Cyanea capillata
title_fullStr Range expansions of scyphozoan jellyfish - the case study of Periphylla periphylla and Cyanea capillata
title_full_unstemmed Range expansions of scyphozoan jellyfish - the case study of Periphylla periphylla and Cyanea capillata
title_sort range expansions of scyphozoan jellyfish - the case study of periphylla periphylla and cyanea capillata
publishDate 2022
url https://epic.awi.de/id/eprint/57234/
https://epic.awi.de/id/eprint/57234/1/MScThesis_Niko_Steiner.pdf
https://hdl.handle.net/10013/epic.7b188b16-16a1-4a70-a45f-9e20f9549902
geographic Arctic
Greenland
Norway
Svalbard
geographic_facet Arctic
Greenland
Norway
Svalbard
genre Arctic
Climate change
Greenland
Svalbard
Zooplankton
genre_facet Arctic
Climate change
Greenland
Svalbard
Zooplankton
op_source EPIC374 p.
op_relation https://epic.awi.de/id/eprint/57234/1/MScThesis_Niko_Steiner.pdf
Steiner, N. (2022) Range expansions of scyphozoan jellyfish - the case study of Periphylla periphylla and Cyanea capillata , Master thesis, University of Bremen. hdl:10013/epic.7b188b16-16a1-4a70-a45f-9e20f9549902
_version_ 1789962415581954048