Phylogeography and molecular diversity of two highly abundant Themisto amphipod species in the Arctic Ocean based on the mitochondrial COI gene

Rapid warming in the Arctic is drastically impacting marine ecosystems, affecting species diversity, distribution, and food web structure. Pelagic Themisto amphipods are a dominant component of the Arctic zooplankton community and represent a key link between secondary producers and marine vertebrat...

Full description

Bibliographic Details
Main Author: Murray, Ayla
Format: Thesis
Language:unknown
Published: 2021
Subjects:
Online Access:https://epic.awi.de/id/eprint/56537/
https://epic.awi.de/id/eprint/56537/1/Thesis_Murray_Ayla.pdf
https://hdl.handle.net/10013/epic.ca48f0c4-af30-4f41-8c88-cb6acb1fa8dc
id ftawi:oai:epic.awi.de:56537
record_format openpolar
spelling ftawi:oai:epic.awi.de:56537 2024-09-15T17:50:38+00:00 Phylogeography and molecular diversity of two highly abundant Themisto amphipod species in the Arctic Ocean based on the mitochondrial COI gene Murray, Ayla 2021-05-01 application/pdf https://epic.awi.de/id/eprint/56537/ https://epic.awi.de/id/eprint/56537/1/Thesis_Murray_Ayla.pdf https://hdl.handle.net/10013/epic.ca48f0c4-af30-4f41-8c88-cb6acb1fa8dc unknown https://epic.awi.de/id/eprint/56537/1/Thesis_Murray_Ayla.pdf Murray, A. (2021) Phylogeography and molecular diversity of two highly abundant Themisto amphipod species in the Arctic Ocean based on the mitochondrial COI gene , Master thesis, University of Bremen. hdl:10013/epic.ca48f0c4-af30-4f41-8c88-cb6acb1fa8dc EPIC371 p. Thesis notRev 2021 ftawi 2024-06-24T04:28:46Z Rapid warming in the Arctic is drastically impacting marine ecosystems, affecting species diversity, distribution, and food web structure. Pelagic Themisto amphipods are a dominant component of the Arctic zooplankton community and represent a key link between secondary producers and marine vertebrates at higher trophic levels. Two co-existing species dominate in the region: Themisto libellula, considered a true Arctic species and Themisto abyssorum, a sub-Arctic, boreal species. Both have exhibited recent changes in abundance and range shifts, likely due to the Atlantification of the Arctic. Many aspects of the ecology and genetic structure of these two species are not well studied, despite their high biomass, importance in the food web and the fact that they are already being affected by rapid climate change in the Arctic. We tested both species for levels of genetic diversity, patterns of spatial genetic structure and demographic history using samples from the Greenland shelf, Fram Strait, and Svalbard. This was achieved using variation at the mitochondrial cytochrome c oxidase subunit 1 gene (mtCOI). These data revealed strikingly different levels of mtCOI diversity: low levels in T. libellula contrasted with high diversity in T. abyssorum. No spatial genetic structure was found, and high levels of connectivity and evidence of historic demographic expansion were exhibited by both species. These patterns of diversity and demographic signatures are likely explained by glaciation events impacting population sizes during the LGM. High population connectivity is likely due to mixing among Themisto populations, caused by the multi-directional currents in the region. The observed low genetic diversity, in combination with its cold adaptions, could cause T. libellula to be more susceptible in the Atlantification of the Arctic. In contrast, high diversity likely increases adaptive potential in T. abyssorum which, combined with its Atlantic affinity, could lead to it benefitting from current warming trends. This study ... Thesis Arctic Arctic Ocean Climate change Fram Strait Greenland Svalbard Themisto abyssorum Themisto Themisto libellula Zooplankton Alfred Wegener Institute for Polar- and Marine Research (AWI): ePIC (electronic Publication Information Center)
institution Open Polar
collection Alfred Wegener Institute for Polar- and Marine Research (AWI): ePIC (electronic Publication Information Center)
op_collection_id ftawi
language unknown
description Rapid warming in the Arctic is drastically impacting marine ecosystems, affecting species diversity, distribution, and food web structure. Pelagic Themisto amphipods are a dominant component of the Arctic zooplankton community and represent a key link between secondary producers and marine vertebrates at higher trophic levels. Two co-existing species dominate in the region: Themisto libellula, considered a true Arctic species and Themisto abyssorum, a sub-Arctic, boreal species. Both have exhibited recent changes in abundance and range shifts, likely due to the Atlantification of the Arctic. Many aspects of the ecology and genetic structure of these two species are not well studied, despite their high biomass, importance in the food web and the fact that they are already being affected by rapid climate change in the Arctic. We tested both species for levels of genetic diversity, patterns of spatial genetic structure and demographic history using samples from the Greenland shelf, Fram Strait, and Svalbard. This was achieved using variation at the mitochondrial cytochrome c oxidase subunit 1 gene (mtCOI). These data revealed strikingly different levels of mtCOI diversity: low levels in T. libellula contrasted with high diversity in T. abyssorum. No spatial genetic structure was found, and high levels of connectivity and evidence of historic demographic expansion were exhibited by both species. These patterns of diversity and demographic signatures are likely explained by glaciation events impacting population sizes during the LGM. High population connectivity is likely due to mixing among Themisto populations, caused by the multi-directional currents in the region. The observed low genetic diversity, in combination with its cold adaptions, could cause T. libellula to be more susceptible in the Atlantification of the Arctic. In contrast, high diversity likely increases adaptive potential in T. abyssorum which, combined with its Atlantic affinity, could lead to it benefitting from current warming trends. This study ...
format Thesis
author Murray, Ayla
spellingShingle Murray, Ayla
Phylogeography and molecular diversity of two highly abundant Themisto amphipod species in the Arctic Ocean based on the mitochondrial COI gene
author_facet Murray, Ayla
author_sort Murray, Ayla
title Phylogeography and molecular diversity of two highly abundant Themisto amphipod species in the Arctic Ocean based on the mitochondrial COI gene
title_short Phylogeography and molecular diversity of two highly abundant Themisto amphipod species in the Arctic Ocean based on the mitochondrial COI gene
title_full Phylogeography and molecular diversity of two highly abundant Themisto amphipod species in the Arctic Ocean based on the mitochondrial COI gene
title_fullStr Phylogeography and molecular diversity of two highly abundant Themisto amphipod species in the Arctic Ocean based on the mitochondrial COI gene
title_full_unstemmed Phylogeography and molecular diversity of two highly abundant Themisto amphipod species in the Arctic Ocean based on the mitochondrial COI gene
title_sort phylogeography and molecular diversity of two highly abundant themisto amphipod species in the arctic ocean based on the mitochondrial coi gene
publishDate 2021
url https://epic.awi.de/id/eprint/56537/
https://epic.awi.de/id/eprint/56537/1/Thesis_Murray_Ayla.pdf
https://hdl.handle.net/10013/epic.ca48f0c4-af30-4f41-8c88-cb6acb1fa8dc
genre Arctic
Arctic Ocean
Climate change
Fram Strait
Greenland
Svalbard
Themisto abyssorum
Themisto
Themisto libellula
Zooplankton
genre_facet Arctic
Arctic Ocean
Climate change
Fram Strait
Greenland
Svalbard
Themisto abyssorum
Themisto
Themisto libellula
Zooplankton
op_source EPIC371 p.
op_relation https://epic.awi.de/id/eprint/56537/1/Thesis_Murray_Ayla.pdf
Murray, A. (2021) Phylogeography and molecular diversity of two highly abundant Themisto amphipod species in the Arctic Ocean based on the mitochondrial COI gene , Master thesis, University of Bremen. hdl:10013/epic.ca48f0c4-af30-4f41-8c88-cb6acb1fa8dc
_version_ 1810292454187859968