Interglacial Antarctic–Southern Ocean climate decoupling due to moisture source area shifts

Succession of cold glacials and warm interglacials during the Quaternary results from large global climate responses to variable orbital configurations, accompanied by fluctuating greenhouse gas concentrations. Despite the influences of sea ice and atmospheric and ocean circulations in the Southern...

Full description

Bibliographic Details
Published in:Nature Geoscience
Main Authors: Landais, A., Stenni, B., Masson-Delmotte, V., Jouzel, J., Cauquoin, A., Fourré, E., Minster, B., Selmo, E., Extier, T., Werner, M., Vimeux, F., Uemura, R., Crotti, I., Grisart, A.
Format: Article in Journal/Newspaper
Language:unknown
Published: Springer Nature 2021
Subjects:
Online Access:https://epic.awi.de/id/eprint/55016/
https://doi.org/10.1038/s41561-021-00856-4
https://hdl.handle.net/10013/epic.4649c4d0-60b4-457c-8034-4126036863fb
id ftawi:oai:epic.awi.de:55016
record_format openpolar
spelling ftawi:oai:epic.awi.de:55016 2023-05-15T13:45:22+02:00 Interglacial Antarctic–Southern Ocean climate decoupling due to moisture source area shifts Landais, A. Stenni, B. Masson-Delmotte, V. Jouzel, J. Cauquoin, A. Fourré, E. Minster, B. Selmo, E. Extier, T. Werner, M. Vimeux, F. Uemura, R. Crotti, I. Grisart, A. 2021-11-29 https://epic.awi.de/id/eprint/55016/ https://doi.org/10.1038/s41561-021-00856-4 https://hdl.handle.net/10013/epic.4649c4d0-60b4-457c-8034-4126036863fb unknown Springer Nature Landais, A. , Stenni, B. , Masson-Delmotte, V. , Jouzel, J. , Cauquoin, A. , Fourré, E. , Minster, B. , Selmo, E. , Extier, T. , Werner, M. orcid:0000-0002-6473-0243 , Vimeux, F. , Uemura, R. , Crotti, I. and Grisart, A. (2021) Interglacial Antarctic–Southern Ocean climate decoupling due to moisture source area shifts , Nature Geoscience . doi:10.1038/s41561-021-00856-4 <https://doi.org/10.1038/s41561-021-00856-4> , hdl:10013/epic.4649c4d0-60b4-457c-8034-4126036863fb EPIC3Nature Geoscience, Springer Nature, ISSN: 1752-0894 Article isiRev 2021 ftawi https://doi.org/10.1038/s41561-021-00856-4 2021-12-24T15:46:38Z Succession of cold glacials and warm interglacials during the Quaternary results from large global climate responses to variable orbital configurations, accompanied by fluctuating greenhouse gas concentrations. Despite the influences of sea ice and atmospheric and ocean circulations in the Southern Ocean on atmospheric CO2 concentrations and climate, past changes in this region remain poorly documented. Here, we present the 800 ka deuterium excess record from the East Antarctica EPICA Dome C ice core, tracking sea surface temperature in evaporative regions of the Indian sector of the Southern Ocean from which moisture precipitated in East Antarctica is derived. We find that low obliquity leads to surface warming in evaporative moisture source regions during each glacial inception, although this relative temperature increase is counterbalanced by global cooling during glacial maxima. Links between the two regions during interglacials depends on the existence of a temperature maximum at the interglacial onset. In its absence, temperature maxima in the evaporative moisture source regions and in East Antarctica were synchronous. For the other interglacials, temperature maxima in the source areas lag early local temperature maxima by several thousand years, probably because of a change in the position of the evaporative source areas. Article in Journal/Newspaper Antarc* Antarctic Antarctica East Antarctica EPICA ice core Sea ice Southern Ocean Alfred Wegener Institute for Polar- and Marine Research (AWI): ePIC (electronic Publication Information Center) Antarctic East Antarctica Indian Southern Ocean Nature Geoscience 14 12 918 923
institution Open Polar
collection Alfred Wegener Institute for Polar- and Marine Research (AWI): ePIC (electronic Publication Information Center)
op_collection_id ftawi
language unknown
description Succession of cold glacials and warm interglacials during the Quaternary results from large global climate responses to variable orbital configurations, accompanied by fluctuating greenhouse gas concentrations. Despite the influences of sea ice and atmospheric and ocean circulations in the Southern Ocean on atmospheric CO2 concentrations and climate, past changes in this region remain poorly documented. Here, we present the 800 ka deuterium excess record from the East Antarctica EPICA Dome C ice core, tracking sea surface temperature in evaporative regions of the Indian sector of the Southern Ocean from which moisture precipitated in East Antarctica is derived. We find that low obliquity leads to surface warming in evaporative moisture source regions during each glacial inception, although this relative temperature increase is counterbalanced by global cooling during glacial maxima. Links between the two regions during interglacials depends on the existence of a temperature maximum at the interglacial onset. In its absence, temperature maxima in the evaporative moisture source regions and in East Antarctica were synchronous. For the other interglacials, temperature maxima in the source areas lag early local temperature maxima by several thousand years, probably because of a change in the position of the evaporative source areas.
format Article in Journal/Newspaper
author Landais, A.
Stenni, B.
Masson-Delmotte, V.
Jouzel, J.
Cauquoin, A.
Fourré, E.
Minster, B.
Selmo, E.
Extier, T.
Werner, M.
Vimeux, F.
Uemura, R.
Crotti, I.
Grisart, A.
spellingShingle Landais, A.
Stenni, B.
Masson-Delmotte, V.
Jouzel, J.
Cauquoin, A.
Fourré, E.
Minster, B.
Selmo, E.
Extier, T.
Werner, M.
Vimeux, F.
Uemura, R.
Crotti, I.
Grisart, A.
Interglacial Antarctic–Southern Ocean climate decoupling due to moisture source area shifts
author_facet Landais, A.
Stenni, B.
Masson-Delmotte, V.
Jouzel, J.
Cauquoin, A.
Fourré, E.
Minster, B.
Selmo, E.
Extier, T.
Werner, M.
Vimeux, F.
Uemura, R.
Crotti, I.
Grisart, A.
author_sort Landais, A.
title Interglacial Antarctic–Southern Ocean climate decoupling due to moisture source area shifts
title_short Interglacial Antarctic–Southern Ocean climate decoupling due to moisture source area shifts
title_full Interglacial Antarctic–Southern Ocean climate decoupling due to moisture source area shifts
title_fullStr Interglacial Antarctic–Southern Ocean climate decoupling due to moisture source area shifts
title_full_unstemmed Interglacial Antarctic–Southern Ocean climate decoupling due to moisture source area shifts
title_sort interglacial antarctic–southern ocean climate decoupling due to moisture source area shifts
publisher Springer Nature
publishDate 2021
url https://epic.awi.de/id/eprint/55016/
https://doi.org/10.1038/s41561-021-00856-4
https://hdl.handle.net/10013/epic.4649c4d0-60b4-457c-8034-4126036863fb
geographic Antarctic
East Antarctica
Indian
Southern Ocean
geographic_facet Antarctic
East Antarctica
Indian
Southern Ocean
genre Antarc*
Antarctic
Antarctica
East Antarctica
EPICA
ice core
Sea ice
Southern Ocean
genre_facet Antarc*
Antarctic
Antarctica
East Antarctica
EPICA
ice core
Sea ice
Southern Ocean
op_source EPIC3Nature Geoscience, Springer Nature, ISSN: 1752-0894
op_relation Landais, A. , Stenni, B. , Masson-Delmotte, V. , Jouzel, J. , Cauquoin, A. , Fourré, E. , Minster, B. , Selmo, E. , Extier, T. , Werner, M. orcid:0000-0002-6473-0243 , Vimeux, F. , Uemura, R. , Crotti, I. and Grisart, A. (2021) Interglacial Antarctic–Southern Ocean climate decoupling due to moisture source area shifts , Nature Geoscience . doi:10.1038/s41561-021-00856-4 <https://doi.org/10.1038/s41561-021-00856-4> , hdl:10013/epic.4649c4d0-60b4-457c-8034-4126036863fb
op_doi https://doi.org/10.1038/s41561-021-00856-4
container_title Nature Geoscience
container_volume 14
container_issue 12
container_start_page 918
op_container_end_page 923
_version_ 1766222631057489920