Antarctic icebergs reorganize ocean circulation during Pleistocene glacials

The dominant feature of large-scale mass transfer in the modern ocean is the Atlantic meridional overturning circulation (AMOC). The geometry and vigour of this circulation influences global climate on various timescales. Palaeoceanographic evidence suggests that during glacial periods of the past 1...

Full description

Bibliographic Details
Published in:Nature
Main Authors: Starr, Aidan, Hall, Ian R., Barker, Stephen, Rackow, Thomas, Zhang, Xu, Hemming, Sidney R., van der Lubbe, H. J. L., Knorr, Gregor, Berke, Melissa A., Bigg, Grant R., Cartagena-Sierra, Alejandra, Jiménez-Espejo, Francisco J., Gong, Xun, Gruetzner, Jens, Lathika, Nambiyathodi, LeVay, Leah J., Robinson, Rebecca S., Ziegler, Martin
Format: Article in Journal/Newspaper
Language:unknown
Published: Nature Publishing Group 2021
Subjects:
Online Access:https://epic.awi.de/id/eprint/53590/
https://doi.org/10.1038/s41586-020-03094-7
https://hdl.handle.net/10013/epic.2d3ef2cf-7449-49b5-b01f-aa2d351157ef
id ftawi:oai:epic.awi.de:53590
record_format openpolar
spelling ftawi:oai:epic.awi.de:53590 2024-09-15T17:42:04+00:00 Antarctic icebergs reorganize ocean circulation during Pleistocene glacials Starr, Aidan Hall, Ian R. Barker, Stephen Rackow, Thomas Zhang, Xu Hemming, Sidney R. van der Lubbe, H. J. L. Knorr, Gregor Berke, Melissa A. Bigg, Grant R. Cartagena-Sierra, Alejandra Jiménez-Espejo, Francisco J. Gong, Xun Gruetzner, Jens Lathika, Nambiyathodi LeVay, Leah J. Robinson, Rebecca S. Ziegler, Martin 2021-01-13 https://epic.awi.de/id/eprint/53590/ https://doi.org/10.1038/s41586-020-03094-7 https://hdl.handle.net/10013/epic.2d3ef2cf-7449-49b5-b01f-aa2d351157ef unknown Nature Publishing Group Starr, A. , Hall, I. R. , Barker, S. , Rackow, T. orcid:0000-0002-5468-575X , Zhang, X. orcid:0000-0003-1833-9689 , Hemming, S. R. , van der Lubbe, H. J. L. , Knorr, G. orcid:0000-0002-8317-5046 , Berke, M. A. , Bigg, G. R. , Cartagena-Sierra, A. , Jiménez-Espejo, F. J. , Gong, X. orcid:0000-0001-9308-4431 , Gruetzner, J. orcid:0000-0001-5445-2393 , Lathika, N. , LeVay, L. J. , Robinson, R. S. and Ziegler, M. (2021) Antarctic icebergs reorganize ocean circulation during Pleistocene glacials , Nature, 589 (7841), pp. 236-241 . doi:10.1038/s41586-020-03094-7 <https://doi.org/10.1038/s41586-020-03094-7> , hdl:10013/epic.2d3ef2cf-7449-49b5-b01f-aa2d351157ef EPIC3Nature, Nature Publishing Group, 589(7841), pp. 236-241, ISSN: 0028-0836 Article isiRev 2021 ftawi https://doi.org/10.1038/s41586-020-03094-7 2024-06-24T04:26:11Z The dominant feature of large-scale mass transfer in the modern ocean is the Atlantic meridional overturning circulation (AMOC). The geometry and vigour of this circulation influences global climate on various timescales. Palaeoceanographic evidence suggests that during glacial periods of the past 1.5 million years the AMOC had markedly different features from today; in the Atlantic basin, deep waters of Southern Ocean origin increased in volume while above them the core of the North Atlantic Deep Water (NADW) shoaled. An absence of evidence on the origin of this phenomenon means that the sequence of events leading to global glacial conditions remains unclear. Here we present multi-proxy evidence showing that northward shifts in Antarctic iceberg melt in the Indian–Atlantic Southern Ocean (0–50°E) systematically preceded deep-water mass reorganizations by one to two thousand years during Pleistocene-era glaciations. With the aid of iceberg-trajectory model experiments, we demonstrate that such a shift in iceberg trajectories during glacial periods can result in a considerable redistribution of freshwater in the Southern Ocean. We suggest that this, in concert with increased sea-ice cover, enabled positive buoyancy anomalies to ‘escape’ into the upper limb of the AMOC, providing a teleconnection between surface Southern Ocean conditions and the formation of NADW. The magnitude and pacing of this mechanism evolved substantially across the mid-Pleistocene transition, and the coeval increase in magnitude of the ‘southern escape’ and deep circulation perturbations implicate this mechanism as a key feedback in the transition to the ‘100-kyr world’, in which glacial–interglacial cycles occur at roughly 100,000-year periods. Article in Journal/Newspaper Antarc* Antarctic Iceberg* NADW North Atlantic Deep Water North Atlantic Sea ice Southern Ocean Alfred Wegener Institute for Polar- and Marine Research (AWI): ePIC (electronic Publication Information Center) Nature 589 7841 236 241
institution Open Polar
collection Alfred Wegener Institute for Polar- and Marine Research (AWI): ePIC (electronic Publication Information Center)
op_collection_id ftawi
language unknown
description The dominant feature of large-scale mass transfer in the modern ocean is the Atlantic meridional overturning circulation (AMOC). The geometry and vigour of this circulation influences global climate on various timescales. Palaeoceanographic evidence suggests that during glacial periods of the past 1.5 million years the AMOC had markedly different features from today; in the Atlantic basin, deep waters of Southern Ocean origin increased in volume while above them the core of the North Atlantic Deep Water (NADW) shoaled. An absence of evidence on the origin of this phenomenon means that the sequence of events leading to global glacial conditions remains unclear. Here we present multi-proxy evidence showing that northward shifts in Antarctic iceberg melt in the Indian–Atlantic Southern Ocean (0–50°E) systematically preceded deep-water mass reorganizations by one to two thousand years during Pleistocene-era glaciations. With the aid of iceberg-trajectory model experiments, we demonstrate that such a shift in iceberg trajectories during glacial periods can result in a considerable redistribution of freshwater in the Southern Ocean. We suggest that this, in concert with increased sea-ice cover, enabled positive buoyancy anomalies to ‘escape’ into the upper limb of the AMOC, providing a teleconnection between surface Southern Ocean conditions and the formation of NADW. The magnitude and pacing of this mechanism evolved substantially across the mid-Pleistocene transition, and the coeval increase in magnitude of the ‘southern escape’ and deep circulation perturbations implicate this mechanism as a key feedback in the transition to the ‘100-kyr world’, in which glacial–interglacial cycles occur at roughly 100,000-year periods.
format Article in Journal/Newspaper
author Starr, Aidan
Hall, Ian R.
Barker, Stephen
Rackow, Thomas
Zhang, Xu
Hemming, Sidney R.
van der Lubbe, H. J. L.
Knorr, Gregor
Berke, Melissa A.
Bigg, Grant R.
Cartagena-Sierra, Alejandra
Jiménez-Espejo, Francisco J.
Gong, Xun
Gruetzner, Jens
Lathika, Nambiyathodi
LeVay, Leah J.
Robinson, Rebecca S.
Ziegler, Martin
spellingShingle Starr, Aidan
Hall, Ian R.
Barker, Stephen
Rackow, Thomas
Zhang, Xu
Hemming, Sidney R.
van der Lubbe, H. J. L.
Knorr, Gregor
Berke, Melissa A.
Bigg, Grant R.
Cartagena-Sierra, Alejandra
Jiménez-Espejo, Francisco J.
Gong, Xun
Gruetzner, Jens
Lathika, Nambiyathodi
LeVay, Leah J.
Robinson, Rebecca S.
Ziegler, Martin
Antarctic icebergs reorganize ocean circulation during Pleistocene glacials
author_facet Starr, Aidan
Hall, Ian R.
Barker, Stephen
Rackow, Thomas
Zhang, Xu
Hemming, Sidney R.
van der Lubbe, H. J. L.
Knorr, Gregor
Berke, Melissa A.
Bigg, Grant R.
Cartagena-Sierra, Alejandra
Jiménez-Espejo, Francisco J.
Gong, Xun
Gruetzner, Jens
Lathika, Nambiyathodi
LeVay, Leah J.
Robinson, Rebecca S.
Ziegler, Martin
author_sort Starr, Aidan
title Antarctic icebergs reorganize ocean circulation during Pleistocene glacials
title_short Antarctic icebergs reorganize ocean circulation during Pleistocene glacials
title_full Antarctic icebergs reorganize ocean circulation during Pleistocene glacials
title_fullStr Antarctic icebergs reorganize ocean circulation during Pleistocene glacials
title_full_unstemmed Antarctic icebergs reorganize ocean circulation during Pleistocene glacials
title_sort antarctic icebergs reorganize ocean circulation during pleistocene glacials
publisher Nature Publishing Group
publishDate 2021
url https://epic.awi.de/id/eprint/53590/
https://doi.org/10.1038/s41586-020-03094-7
https://hdl.handle.net/10013/epic.2d3ef2cf-7449-49b5-b01f-aa2d351157ef
genre Antarc*
Antarctic
Iceberg*
NADW
North Atlantic Deep Water
North Atlantic
Sea ice
Southern Ocean
genre_facet Antarc*
Antarctic
Iceberg*
NADW
North Atlantic Deep Water
North Atlantic
Sea ice
Southern Ocean
op_source EPIC3Nature, Nature Publishing Group, 589(7841), pp. 236-241, ISSN: 0028-0836
op_relation Starr, A. , Hall, I. R. , Barker, S. , Rackow, T. orcid:0000-0002-5468-575X , Zhang, X. orcid:0000-0003-1833-9689 , Hemming, S. R. , van der Lubbe, H. J. L. , Knorr, G. orcid:0000-0002-8317-5046 , Berke, M. A. , Bigg, G. R. , Cartagena-Sierra, A. , Jiménez-Espejo, F. J. , Gong, X. orcid:0000-0001-9308-4431 , Gruetzner, J. orcid:0000-0001-5445-2393 , Lathika, N. , LeVay, L. J. , Robinson, R. S. and Ziegler, M. (2021) Antarctic icebergs reorganize ocean circulation during Pleistocene glacials , Nature, 589 (7841), pp. 236-241 . doi:10.1038/s41586-020-03094-7 <https://doi.org/10.1038/s41586-020-03094-7> , hdl:10013/epic.2d3ef2cf-7449-49b5-b01f-aa2d351157ef
op_doi https://doi.org/10.1038/s41586-020-03094-7
container_title Nature
container_volume 589
container_issue 7841
container_start_page 236
op_container_end_page 241
_version_ 1810488445641949184