Marine20—The Marine Radiocarbon Age Calibration Curve (0–55,000 cal BP)

The concentration of radiocarbon (14C) differs between ocean and atmosphere. Radiocarbon determinations from samples which obtained their 14C in the marine environment therefore need a marine-specific calibration curve and cannot be calibrated directly against the atmospheric-based IntCal20 curve. T...

Full description

Bibliographic Details
Published in:Radiocarbon
Main Authors: Heaton, Timothy J, Köhler, Peter, Butzin, Martin, Bard, Edouard, Reimer, Ron W, Austin, William E N, Bronk Ramsey, Christopher, Grootes, Pieter M, Hughen, Konrad A, Kromer, Bernd, Reimer, Paula J, Adkins, Jess, Burke, Andrea, Cook, Mea S, Olsen, Jesper, Skinner, Luke C
Format: Article in Journal/Newspaper
Language:unknown
Published: Cambridge University Press 2020
Subjects:
Online Access:https://epic.awi.de/id/eprint/53054/
https://epic.awi.de/id/eprint/53054/1/heaton2020r.pdf
https://hdl.handle.net/10013/epic.1121c806-f884-4ba1-845e-90de8da6bde4
id ftawi:oai:epic.awi.de:53054
record_format openpolar
spelling ftawi:oai:epic.awi.de:53054 2024-09-15T18:12:04+00:00 Marine20—The Marine Radiocarbon Age Calibration Curve (0–55,000 cal BP) Heaton, Timothy J Köhler, Peter Butzin, Martin Bard, Edouard Reimer, Ron W Austin, William E N Bronk Ramsey, Christopher Grootes, Pieter M Hughen, Konrad A Kromer, Bernd Reimer, Paula J Adkins, Jess Burke, Andrea Cook, Mea S Olsen, Jesper Skinner, Luke C 2020 application/pdf https://epic.awi.de/id/eprint/53054/ https://epic.awi.de/id/eprint/53054/1/heaton2020r.pdf https://hdl.handle.net/10013/epic.1121c806-f884-4ba1-845e-90de8da6bde4 unknown Cambridge University Press https://epic.awi.de/id/eprint/53054/1/heaton2020r.pdf Heaton, T. J. , Köhler, P. orcid:0000-0003-0904-8484 , Butzin, M. orcid:0000-0002-9275-7304 , Bard, E. , Reimer, R. W. , Austin, W. E. N. , Bronk Ramsey, C. , Grootes, P. M. , Hughen, K. A. , Kromer, B. , Reimer, P. J. , Adkins, J. , Burke, A. , Cook, M. S. , Olsen, J. and Skinner, L. C. (2020) Marine20—The Marine Radiocarbon Age Calibration Curve (0–55,000 cal BP) , Radiocarbon, 62 (4), pp. 779-820 . doi:10.1017/RDC.2020.68 <https://doi.org/10.1017/RDC.2020.68> , hdl:10013/epic.1121c806-f884-4ba1-845e-90de8da6bde4 EPIC3Radiocarbon, Cambridge University Press, 62(4), pp. 779-820, ISSN: 0033-8222 Article isiRev 2020 ftawi https://doi.org/10.1017/RDC.2020.68 2024-06-24T04:26:11Z The concentration of radiocarbon (14C) differs between ocean and atmosphere. Radiocarbon determinations from samples which obtained their 14C in the marine environment therefore need a marine-specific calibration curve and cannot be calibrated directly against the atmospheric-based IntCal20 curve. This paper presents Marine20, an update to the internationally agreed marine radiocarbon age calibration curve that provides a non-polar global-average marine record of radiocarbon from 0–55 cal kBP and serves as a baseline for regional oceanic variation. Marine20 is intended for calibration of marine radiocarbon samples from non-polar regions; it is not suitable for calibration in polar regions where variability in sea ice extent, ocean upwelling and air-sea gas exchange may have caused larger changes to concentrations of marine radiocarbon. The Marine20 curve is based upon 500 simulations with an ocean/atmosphere/biosphere box-model of the global carbon cycle that has been forced by posterior realizations of our Northern Hemispheric atmospheric IntCal20 14C curve and reconstructed changes in CO2 obtained from ice core data. These forcings enable us to incorporate carbon cycle dynamics and temporal changes in the atmospheric 14C level. The box-model simulations of the global-average marine radiocarbon reservoir age are similar to those of a more complex three-dimensional ocean general circulation model. However, simplicity and speed of the box model allow us to use a Monte Carlo approach to rigorously propagate the uncertainty in both the historic concentration of atmospheric 14C and other key parameters of the carbon cycle through to our final Marine20 calibration curve. This robust propagation of uncertainty is fundamental to providing reliable precision for the radiocarbon age calibration of marine based samples. We make a first step towards deconvolving the contributions of different processes to the total uncertainty; discuss the main differences of Marine20 from the previous age calibration curve Marine13; and ... Article in Journal/Newspaper ice core Sea ice Alfred Wegener Institute for Polar- and Marine Research (AWI): ePIC (electronic Publication Information Center) Radiocarbon 62 4 779 820
institution Open Polar
collection Alfred Wegener Institute for Polar- and Marine Research (AWI): ePIC (electronic Publication Information Center)
op_collection_id ftawi
language unknown
description The concentration of radiocarbon (14C) differs between ocean and atmosphere. Radiocarbon determinations from samples which obtained their 14C in the marine environment therefore need a marine-specific calibration curve and cannot be calibrated directly against the atmospheric-based IntCal20 curve. This paper presents Marine20, an update to the internationally agreed marine radiocarbon age calibration curve that provides a non-polar global-average marine record of radiocarbon from 0–55 cal kBP and serves as a baseline for regional oceanic variation. Marine20 is intended for calibration of marine radiocarbon samples from non-polar regions; it is not suitable for calibration in polar regions where variability in sea ice extent, ocean upwelling and air-sea gas exchange may have caused larger changes to concentrations of marine radiocarbon. The Marine20 curve is based upon 500 simulations with an ocean/atmosphere/biosphere box-model of the global carbon cycle that has been forced by posterior realizations of our Northern Hemispheric atmospheric IntCal20 14C curve and reconstructed changes in CO2 obtained from ice core data. These forcings enable us to incorporate carbon cycle dynamics and temporal changes in the atmospheric 14C level. The box-model simulations of the global-average marine radiocarbon reservoir age are similar to those of a more complex three-dimensional ocean general circulation model. However, simplicity and speed of the box model allow us to use a Monte Carlo approach to rigorously propagate the uncertainty in both the historic concentration of atmospheric 14C and other key parameters of the carbon cycle through to our final Marine20 calibration curve. This robust propagation of uncertainty is fundamental to providing reliable precision for the radiocarbon age calibration of marine based samples. We make a first step towards deconvolving the contributions of different processes to the total uncertainty; discuss the main differences of Marine20 from the previous age calibration curve Marine13; and ...
format Article in Journal/Newspaper
author Heaton, Timothy J
Köhler, Peter
Butzin, Martin
Bard, Edouard
Reimer, Ron W
Austin, William E N
Bronk Ramsey, Christopher
Grootes, Pieter M
Hughen, Konrad A
Kromer, Bernd
Reimer, Paula J
Adkins, Jess
Burke, Andrea
Cook, Mea S
Olsen, Jesper
Skinner, Luke C
spellingShingle Heaton, Timothy J
Köhler, Peter
Butzin, Martin
Bard, Edouard
Reimer, Ron W
Austin, William E N
Bronk Ramsey, Christopher
Grootes, Pieter M
Hughen, Konrad A
Kromer, Bernd
Reimer, Paula J
Adkins, Jess
Burke, Andrea
Cook, Mea S
Olsen, Jesper
Skinner, Luke C
Marine20—The Marine Radiocarbon Age Calibration Curve (0–55,000 cal BP)
author_facet Heaton, Timothy J
Köhler, Peter
Butzin, Martin
Bard, Edouard
Reimer, Ron W
Austin, William E N
Bronk Ramsey, Christopher
Grootes, Pieter M
Hughen, Konrad A
Kromer, Bernd
Reimer, Paula J
Adkins, Jess
Burke, Andrea
Cook, Mea S
Olsen, Jesper
Skinner, Luke C
author_sort Heaton, Timothy J
title Marine20—The Marine Radiocarbon Age Calibration Curve (0–55,000 cal BP)
title_short Marine20—The Marine Radiocarbon Age Calibration Curve (0–55,000 cal BP)
title_full Marine20—The Marine Radiocarbon Age Calibration Curve (0–55,000 cal BP)
title_fullStr Marine20—The Marine Radiocarbon Age Calibration Curve (0–55,000 cal BP)
title_full_unstemmed Marine20—The Marine Radiocarbon Age Calibration Curve (0–55,000 cal BP)
title_sort marine20—the marine radiocarbon age calibration curve (0–55,000 cal bp)
publisher Cambridge University Press
publishDate 2020
url https://epic.awi.de/id/eprint/53054/
https://epic.awi.de/id/eprint/53054/1/heaton2020r.pdf
https://hdl.handle.net/10013/epic.1121c806-f884-4ba1-845e-90de8da6bde4
genre ice core
Sea ice
genre_facet ice core
Sea ice
op_source EPIC3Radiocarbon, Cambridge University Press, 62(4), pp. 779-820, ISSN: 0033-8222
op_relation https://epic.awi.de/id/eprint/53054/1/heaton2020r.pdf
Heaton, T. J. , Köhler, P. orcid:0000-0003-0904-8484 , Butzin, M. orcid:0000-0002-9275-7304 , Bard, E. , Reimer, R. W. , Austin, W. E. N. , Bronk Ramsey, C. , Grootes, P. M. , Hughen, K. A. , Kromer, B. , Reimer, P. J. , Adkins, J. , Burke, A. , Cook, M. S. , Olsen, J. and Skinner, L. C. (2020) Marine20—The Marine Radiocarbon Age Calibration Curve (0–55,000 cal BP) , Radiocarbon, 62 (4), pp. 779-820 . doi:10.1017/RDC.2020.68 <https://doi.org/10.1017/RDC.2020.68> , hdl:10013/epic.1121c806-f884-4ba1-845e-90de8da6bde4
op_doi https://doi.org/10.1017/RDC.2020.68
container_title Radiocarbon
container_volume 62
container_issue 4
container_start_page 779
op_container_end_page 820
_version_ 1810449650119868416