CACOON – How will changing freshwater export and terrestrial permafrost thaw influence the Arctic Ocean?

No other region has warmed as much or as rapidly in the past decades as the Arctic. A new project, CACOON, will investigate how coastal Arctic Ocean waters and planktonic communities will respond to changing freshwater inputs driven by on-going climate change. Funded by the British Natural Environme...

Full description

Bibliographic Details
Main Authors: Strauss, Jens, Mann, Paul James
Format: Conference Object
Language:unknown
Published: 2019
Subjects:
Ice
Online Access:https://epic.awi.de/id/eprint/49013/
https://epic.awi.de/id/eprint/49013/1/Strauss_Mann_talk_CACOON_ASM_Jan_19.pdf
https://hdl.handle.net/10013/epic.80b38e79-6aa5-4275-b3b4-3cd2d6a3a883
https://hdl.handle.net/
id ftawi:oai:epic.awi.de:49013
record_format openpolar
spelling ftawi:oai:epic.awi.de:49013 2023-05-15T14:21:57+02:00 CACOON – How will changing freshwater export and terrestrial permafrost thaw influence the Arctic Ocean? Strauss, Jens Mann, Paul James 2019 application/pdf https://epic.awi.de/id/eprint/49013/ https://epic.awi.de/id/eprint/49013/1/Strauss_Mann_talk_CACOON_ASM_Jan_19.pdf https://hdl.handle.net/10013/epic.80b38e79-6aa5-4275-b3b4-3cd2d6a3a883 https://hdl.handle.net/ unknown https://epic.awi.de/id/eprint/49013/1/Strauss_Mann_talk_CACOON_ASM_Jan_19.pdf https://hdl.handle.net/ Strauss, J. and Mann, P. J. (2019) CACOON – How will changing freshwater export and terrestrial permafrost thaw influence the Arctic Ocean? , Changing Arctic Ocean Annual Science Meeting 2019, Birmingham, United Kingdom, 15 January 2019 - 17 January 2019 . hdl:10013/epic.80b38e79-6aa5-4275-b3b4-3cd2d6a3a883 EPIC3Changing Arctic Ocean Annual Science Meeting 2019, Birmingham, United Kingdom, 2019-01-15-2019-01-17 Conference notRev 2019 ftawi 2021-12-24T15:44:31Z No other region has warmed as much or as rapidly in the past decades as the Arctic. A new project, CACOON, will investigate how coastal Arctic Ocean waters and planktonic communities will respond to changing freshwater inputs driven by on-going climate change. Funded by the British Natural Environment Research Council (NERC) and the German Federal Ministry of Education and Research (BMBF), CACOON will help to better understand and predict changes to the Arctic marine environment. Arctic rivers annually carry around 13% of all dissolved organic carbon transported globally from land to ocean, despite the Arctic Ocean (AO) making up only approximately 1% of the Earth’s ocean volume. Arctic shelf waters are therefore dominated by terrestrial carbon pools and shelf ecosystems intimately linked to freshwater supplies. Arctic ecosystems also contain perennially frozen carbon that may be released by further warming. Climate change already thaws permafrost, reduces sea-ice and increases riverine discharge over much of the pan-Arctic, triggering important feedbacks. The importance of the near-shore region, consisting of several tightly connected ecosystems that include rivers, deltas, estuaries and the continental shelf, is however often overlooked. We need year-round studies to be able to predict the impact of shifting seasonality, fresher water, changing nutrient supply and greater proportions of permafrost-derived carbon on coastal water processes. CACOON addresses this knowledge gap by investigating the near-shore regions of two major Arctic rivers, the Lena and Kolyma, which together drain 19% of the pan-Arctic watershed area. CACOON will quantify the effect of changing freshwater export and terrestrial permafrost thaw on the type and fate of river-borne organic matter (OM) delivered to Arctic coastal waters, and the resultant changes to ecosystem functioning in the coastal AO. We will achieve this though a combined observational, experimental and modelling study. We will conduct laboratory experiments to parameterise the susceptibility of terrigenous carbon to abiotic and biotic transformation and losses, then use the results from these to deliver a marine ecosystem model of the major biogeochemical cycles of carbon, nutrients and OM cycling in these regions. Conference Object Arctic Arctic Arctic Ocean Climate change Ice permafrost Sea ice Alfred Wegener Institute for Polar- and Marine Research (AWI): ePIC (electronic Publication Information Center) Arctic Arctic Ocean Kolyma ENVELOPE(161.000,161.000,69.500,69.500)
institution Open Polar
collection Alfred Wegener Institute for Polar- and Marine Research (AWI): ePIC (electronic Publication Information Center)
op_collection_id ftawi
language unknown
description No other region has warmed as much or as rapidly in the past decades as the Arctic. A new project, CACOON, will investigate how coastal Arctic Ocean waters and planktonic communities will respond to changing freshwater inputs driven by on-going climate change. Funded by the British Natural Environment Research Council (NERC) and the German Federal Ministry of Education and Research (BMBF), CACOON will help to better understand and predict changes to the Arctic marine environment. Arctic rivers annually carry around 13% of all dissolved organic carbon transported globally from land to ocean, despite the Arctic Ocean (AO) making up only approximately 1% of the Earth’s ocean volume. Arctic shelf waters are therefore dominated by terrestrial carbon pools and shelf ecosystems intimately linked to freshwater supplies. Arctic ecosystems also contain perennially frozen carbon that may be released by further warming. Climate change already thaws permafrost, reduces sea-ice and increases riverine discharge over much of the pan-Arctic, triggering important feedbacks. The importance of the near-shore region, consisting of several tightly connected ecosystems that include rivers, deltas, estuaries and the continental shelf, is however often overlooked. We need year-round studies to be able to predict the impact of shifting seasonality, fresher water, changing nutrient supply and greater proportions of permafrost-derived carbon on coastal water processes. CACOON addresses this knowledge gap by investigating the near-shore regions of two major Arctic rivers, the Lena and Kolyma, which together drain 19% of the pan-Arctic watershed area. CACOON will quantify the effect of changing freshwater export and terrestrial permafrost thaw on the type and fate of river-borne organic matter (OM) delivered to Arctic coastal waters, and the resultant changes to ecosystem functioning in the coastal AO. We will achieve this though a combined observational, experimental and modelling study. We will conduct laboratory experiments to parameterise the susceptibility of terrigenous carbon to abiotic and biotic transformation and losses, then use the results from these to deliver a marine ecosystem model of the major biogeochemical cycles of carbon, nutrients and OM cycling in these regions.
format Conference Object
author Strauss, Jens
Mann, Paul James
spellingShingle Strauss, Jens
Mann, Paul James
CACOON – How will changing freshwater export and terrestrial permafrost thaw influence the Arctic Ocean?
author_facet Strauss, Jens
Mann, Paul James
author_sort Strauss, Jens
title CACOON – How will changing freshwater export and terrestrial permafrost thaw influence the Arctic Ocean?
title_short CACOON – How will changing freshwater export and terrestrial permafrost thaw influence the Arctic Ocean?
title_full CACOON – How will changing freshwater export and terrestrial permafrost thaw influence the Arctic Ocean?
title_fullStr CACOON – How will changing freshwater export and terrestrial permafrost thaw influence the Arctic Ocean?
title_full_unstemmed CACOON – How will changing freshwater export and terrestrial permafrost thaw influence the Arctic Ocean?
title_sort cacoon – how will changing freshwater export and terrestrial permafrost thaw influence the arctic ocean?
publishDate 2019
url https://epic.awi.de/id/eprint/49013/
https://epic.awi.de/id/eprint/49013/1/Strauss_Mann_talk_CACOON_ASM_Jan_19.pdf
https://hdl.handle.net/10013/epic.80b38e79-6aa5-4275-b3b4-3cd2d6a3a883
https://hdl.handle.net/
long_lat ENVELOPE(161.000,161.000,69.500,69.500)
geographic Arctic
Arctic Ocean
Kolyma
geographic_facet Arctic
Arctic Ocean
Kolyma
genre Arctic
Arctic
Arctic Ocean
Climate change
Ice
permafrost
Sea ice
genre_facet Arctic
Arctic
Arctic Ocean
Climate change
Ice
permafrost
Sea ice
op_source EPIC3Changing Arctic Ocean Annual Science Meeting 2019, Birmingham, United Kingdom, 2019-01-15-2019-01-17
op_relation https://epic.awi.de/id/eprint/49013/1/Strauss_Mann_talk_CACOON_ASM_Jan_19.pdf
https://hdl.handle.net/
Strauss, J. and Mann, P. J. (2019) CACOON – How will changing freshwater export and terrestrial permafrost thaw influence the Arctic Ocean? , Changing Arctic Ocean Annual Science Meeting 2019, Birmingham, United Kingdom, 15 January 2019 - 17 January 2019 . hdl:10013/epic.80b38e79-6aa5-4275-b3b4-3cd2d6a3a883
_version_ 1766294636083544064