Methane distribution and hydrochemistry in lake and sea ice from a region of thawing permafrost, Siberia

Permafrost regions, and especially thermokarst lakes, play a major role in the global carbon cycle and in the context of global warming. Thermokarst lakes and lagoons are sources of methane to the atmosphere. This process is restricted by an ice cover during the winter. However, the fate of methane...

Full description

Bibliographic Details
Main Author: Spangenberg, Ines
Format: Thesis
Language:unknown
Published: 2018
Subjects:
Ice
Online Access:https://epic.awi.de/id/eprint/48679/
https://epic.awi.de/id/eprint/48679/1/Masterthesis_Spangenberg_Ines.pdf
https://hdl.handle.net/10013/epic.68af3c47-2f97-43ce-a581-b306dac4ba1b
id ftawi:oai:epic.awi.de:48679
record_format openpolar
spelling ftawi:oai:epic.awi.de:48679 2024-09-15T18:08:09+00:00 Methane distribution and hydrochemistry in lake and sea ice from a region of thawing permafrost, Siberia Spangenberg, Ines 2018-10-29 application/pdf https://epic.awi.de/id/eprint/48679/ https://epic.awi.de/id/eprint/48679/1/Masterthesis_Spangenberg_Ines.pdf https://hdl.handle.net/10013/epic.68af3c47-2f97-43ce-a581-b306dac4ba1b unknown https://epic.awi.de/id/eprint/48679/1/Masterthesis_Spangenberg_Ines.pdf Spangenberg, I. (2018) Methane distribution and hydrochemistry in lake and sea ice from a region of thawing permafrost, Siberia , Master thesis, University of Potsdam. hdl:10013/epic.68af3c47-2f97-43ce-a581-b306dac4ba1b EPIC359 p. Thesis notRev 2018 ftawi 2024-06-24T04:21:00Z Permafrost regions, and especially thermokarst lakes, play a major role in the global carbon cycle and in the context of global warming. Thermokarst lakes and lagoons are sources of methane to the atmosphere. This process is restricted by an ice cover during the winter. However, the fate of methane below and in the ice of shallow thermokarst lakes, lagoons and coastal waters is poorly understood. This study focuses on winter ice from two different water bodies in a region of thawing permafrost in northeast Siberia. One is a shallow thermokarst lagoon and the other a bay underlain by submarine permafrost. The two water bodies are semi-closed and open water systems, respectively, with different stages of permafrost degradation. Ice cores were used as records of the freezing process and methane pathways. Hydrochemical parameters, as stable water isotope composition, electrical conductivity, dissolved organic carbon and temperature as well as methane concentrations and stable carbon isotopic signature in the ice were analyzed. Measured parameters differed between and within the two water bodies. The hydrochemical parameters indicated freezing in a semi-closed system for the thermokarst lagoon, where ice growth eventually cuts off exchange between the lagoon and the sea. In the bay, hydrochemistry indicated an open system. Ice on both water bodies was mostly methane-supersaturated with respect to the atmospheric equilibrium concentration. Methane concentration in the ice of the Lagoon varied greatly with highest concentrations at the ice-water interface. Stable isotope signatures indicated that methane above the ice-water interface was oxidized to concentrations close to or below the calculated atmospheric equilibrium concentration. In comparison to the Lagoon, the Bay ice had generally lower methane concentrations. Nevertheless, methane oxidation in ice is a potentially effective process in decreasing methane concentrations in shallow thermokarst lagoons during the winter. As further warming of the Arctic shortens ... Thesis Global warming Ice permafrost Sea ice Thermokarst Siberia Alfred Wegener Institute for Polar- and Marine Research (AWI): ePIC (electronic Publication Information Center)
institution Open Polar
collection Alfred Wegener Institute for Polar- and Marine Research (AWI): ePIC (electronic Publication Information Center)
op_collection_id ftawi
language unknown
description Permafrost regions, and especially thermokarst lakes, play a major role in the global carbon cycle and in the context of global warming. Thermokarst lakes and lagoons are sources of methane to the atmosphere. This process is restricted by an ice cover during the winter. However, the fate of methane below and in the ice of shallow thermokarst lakes, lagoons and coastal waters is poorly understood. This study focuses on winter ice from two different water bodies in a region of thawing permafrost in northeast Siberia. One is a shallow thermokarst lagoon and the other a bay underlain by submarine permafrost. The two water bodies are semi-closed and open water systems, respectively, with different stages of permafrost degradation. Ice cores were used as records of the freezing process and methane pathways. Hydrochemical parameters, as stable water isotope composition, electrical conductivity, dissolved organic carbon and temperature as well as methane concentrations and stable carbon isotopic signature in the ice were analyzed. Measured parameters differed between and within the two water bodies. The hydrochemical parameters indicated freezing in a semi-closed system for the thermokarst lagoon, where ice growth eventually cuts off exchange between the lagoon and the sea. In the bay, hydrochemistry indicated an open system. Ice on both water bodies was mostly methane-supersaturated with respect to the atmospheric equilibrium concentration. Methane concentration in the ice of the Lagoon varied greatly with highest concentrations at the ice-water interface. Stable isotope signatures indicated that methane above the ice-water interface was oxidized to concentrations close to or below the calculated atmospheric equilibrium concentration. In comparison to the Lagoon, the Bay ice had generally lower methane concentrations. Nevertheless, methane oxidation in ice is a potentially effective process in decreasing methane concentrations in shallow thermokarst lagoons during the winter. As further warming of the Arctic shortens ...
format Thesis
author Spangenberg, Ines
spellingShingle Spangenberg, Ines
Methane distribution and hydrochemistry in lake and sea ice from a region of thawing permafrost, Siberia
author_facet Spangenberg, Ines
author_sort Spangenberg, Ines
title Methane distribution and hydrochemistry in lake and sea ice from a region of thawing permafrost, Siberia
title_short Methane distribution and hydrochemistry in lake and sea ice from a region of thawing permafrost, Siberia
title_full Methane distribution and hydrochemistry in lake and sea ice from a region of thawing permafrost, Siberia
title_fullStr Methane distribution and hydrochemistry in lake and sea ice from a region of thawing permafrost, Siberia
title_full_unstemmed Methane distribution and hydrochemistry in lake and sea ice from a region of thawing permafrost, Siberia
title_sort methane distribution and hydrochemistry in lake and sea ice from a region of thawing permafrost, siberia
publishDate 2018
url https://epic.awi.de/id/eprint/48679/
https://epic.awi.de/id/eprint/48679/1/Masterthesis_Spangenberg_Ines.pdf
https://hdl.handle.net/10013/epic.68af3c47-2f97-43ce-a581-b306dac4ba1b
genre Global warming
Ice
permafrost
Sea ice
Thermokarst
Siberia
genre_facet Global warming
Ice
permafrost
Sea ice
Thermokarst
Siberia
op_source EPIC359 p.
op_relation https://epic.awi.de/id/eprint/48679/1/Masterthesis_Spangenberg_Ines.pdf
Spangenberg, I. (2018) Methane distribution and hydrochemistry in lake and sea ice from a region of thawing permafrost, Siberia , Master thesis, University of Potsdam. hdl:10013/epic.68af3c47-2f97-43ce-a581-b306dac4ba1b
_version_ 1810445493525807104