Assessing bio-physical feedbacks in the shelf areas of Laptev Sea
In the context of climate change and of thawing permafrost in Siberia, the freshwater and organic material supplied by rivers to the Arctic Ocean, may increase heavily in the future. Here, we investigate the effect of the variability of optically active water constituents on the heat budget of the L...
Main Authors: | , , , , , , , |
---|---|
Format: | Conference Object |
Language: | unknown |
Published: |
2018
|
Subjects: | |
Online Access: | https://epic.awi.de/id/eprint/48479/ https://epic.awi.de/id/eprint/48479/1/AC3_template_poster_clusC_Pefanis.pdf https://hdl.handle.net/10013/epic.0aa49b98-6d1c-409f-8e86-c5de499e57dc |
id |
ftawi:oai:epic.awi.de:48479 |
---|---|
record_format |
openpolar |
spelling |
ftawi:oai:epic.awi.de:48479 2024-09-15T17:50:41+00:00 Assessing bio-physical feedbacks in the shelf areas of Laptev Sea Pefanis, Vasileios Altenburg Soppa, Mariana Loza, Svetlana Hellmann, Sebastian Janout, Markus Rozanov, Vladimir Dinter, Tilman Bracher, Astrid 2018-11 application/pdf https://epic.awi.de/id/eprint/48479/ https://epic.awi.de/id/eprint/48479/1/AC3_template_poster_clusC_Pefanis.pdf https://hdl.handle.net/10013/epic.0aa49b98-6d1c-409f-8e86-c5de499e57dc unknown https://epic.awi.de/id/eprint/48479/1/AC3_template_poster_clusC_Pefanis.pdf Pefanis, V. orcid:0000-0002-9082-7153 , Altenburg Soppa, M. , Loza, S. orcid:0000-0003-2153-1954 , Hellmann, S. , Janout, M. orcid:0000-0003-4908-2855 , Rozanov, V. , Dinter, T. and Bracher, A. orcid:0000-0003-3025-5517 (2018) Assessing bio-physical feedbacks in the shelf areas of Laptev Sea , 2nd (AC)3 Science Conference on Arctic Amplification, Bremerhaven, Germany, 12 November 2018 - 14 November 2018 . hdl:10013/epic.0aa49b98-6d1c-409f-8e86-c5de499e57dc EPIC32nd (AC)3 Science Conference on Arctic Amplification, Bremerhaven, Germany, 2018-11-12-2018-11-14 Conference notRev 2018 ftawi 2024-06-24T04:21:00Z In the context of climate change and of thawing permafrost in Siberia, the freshwater and organic material supplied by rivers to the Arctic Ocean, may increase heavily in the future. Here, we investigate the effect of the variability of optically active water constituents on the heat budget of the Laptev Sea surface waters. As a first step, we simulate the radiative heating with coupled atmosphere-ocean radiative transfer modelling (RTM). By using satellite remote sensing retrievals of Coloured Dissolved Organic Matter (CDOM), Total Suspended Matter (TSM), Chlorophyll-a (Chla) and sea surface temperature data as input to the RTM simulations, we present the spatial distribution of potential radiative heating of Laptev Sea shelf areas. Additionally, an ocean biogeochemical model coupled to a general circulation model is used to simulate the dynamics of various constituents in response to Arctic Amplification and the feedback on surface heating and sea ice melting. Results suggest that high concentration of CDOM, TSM and Chla in Arctic waters increase the heating rate at the surface of the ocean and reduce the heat losses to the atmosphere during summer. The induced surface heating can result to higher ice melting rates with potential implications to upper ocean stratification and primary production. Conference Object Arctic Arctic Ocean Climate change Ice laptev Laptev Sea permafrost Sea ice Siberia Alfred Wegener Institute for Polar- and Marine Research (AWI): ePIC (electronic Publication Information Center) |
institution |
Open Polar |
collection |
Alfred Wegener Institute for Polar- and Marine Research (AWI): ePIC (electronic Publication Information Center) |
op_collection_id |
ftawi |
language |
unknown |
description |
In the context of climate change and of thawing permafrost in Siberia, the freshwater and organic material supplied by rivers to the Arctic Ocean, may increase heavily in the future. Here, we investigate the effect of the variability of optically active water constituents on the heat budget of the Laptev Sea surface waters. As a first step, we simulate the radiative heating with coupled atmosphere-ocean radiative transfer modelling (RTM). By using satellite remote sensing retrievals of Coloured Dissolved Organic Matter (CDOM), Total Suspended Matter (TSM), Chlorophyll-a (Chla) and sea surface temperature data as input to the RTM simulations, we present the spatial distribution of potential radiative heating of Laptev Sea shelf areas. Additionally, an ocean biogeochemical model coupled to a general circulation model is used to simulate the dynamics of various constituents in response to Arctic Amplification and the feedback on surface heating and sea ice melting. Results suggest that high concentration of CDOM, TSM and Chla in Arctic waters increase the heating rate at the surface of the ocean and reduce the heat losses to the atmosphere during summer. The induced surface heating can result to higher ice melting rates with potential implications to upper ocean stratification and primary production. |
format |
Conference Object |
author |
Pefanis, Vasileios Altenburg Soppa, Mariana Loza, Svetlana Hellmann, Sebastian Janout, Markus Rozanov, Vladimir Dinter, Tilman Bracher, Astrid |
spellingShingle |
Pefanis, Vasileios Altenburg Soppa, Mariana Loza, Svetlana Hellmann, Sebastian Janout, Markus Rozanov, Vladimir Dinter, Tilman Bracher, Astrid Assessing bio-physical feedbacks in the shelf areas of Laptev Sea |
author_facet |
Pefanis, Vasileios Altenburg Soppa, Mariana Loza, Svetlana Hellmann, Sebastian Janout, Markus Rozanov, Vladimir Dinter, Tilman Bracher, Astrid |
author_sort |
Pefanis, Vasileios |
title |
Assessing bio-physical feedbacks in the shelf areas of Laptev Sea |
title_short |
Assessing bio-physical feedbacks in the shelf areas of Laptev Sea |
title_full |
Assessing bio-physical feedbacks in the shelf areas of Laptev Sea |
title_fullStr |
Assessing bio-physical feedbacks in the shelf areas of Laptev Sea |
title_full_unstemmed |
Assessing bio-physical feedbacks in the shelf areas of Laptev Sea |
title_sort |
assessing bio-physical feedbacks in the shelf areas of laptev sea |
publishDate |
2018 |
url |
https://epic.awi.de/id/eprint/48479/ https://epic.awi.de/id/eprint/48479/1/AC3_template_poster_clusC_Pefanis.pdf https://hdl.handle.net/10013/epic.0aa49b98-6d1c-409f-8e86-c5de499e57dc |
genre |
Arctic Arctic Ocean Climate change Ice laptev Laptev Sea permafrost Sea ice Siberia |
genre_facet |
Arctic Arctic Ocean Climate change Ice laptev Laptev Sea permafrost Sea ice Siberia |
op_source |
EPIC32nd (AC)3 Science Conference on Arctic Amplification, Bremerhaven, Germany, 2018-11-12-2018-11-14 |
op_relation |
https://epic.awi.de/id/eprint/48479/1/AC3_template_poster_clusC_Pefanis.pdf Pefanis, V. orcid:0000-0002-9082-7153 , Altenburg Soppa, M. , Loza, S. orcid:0000-0003-2153-1954 , Hellmann, S. , Janout, M. orcid:0000-0003-4908-2855 , Rozanov, V. , Dinter, T. and Bracher, A. orcid:0000-0003-3025-5517 (2018) Assessing bio-physical feedbacks in the shelf areas of Laptev Sea , 2nd (AC)3 Science Conference on Arctic Amplification, Bremerhaven, Germany, 12 November 2018 - 14 November 2018 . hdl:10013/epic.0aa49b98-6d1c-409f-8e86-c5de499e57dc |
_version_ |
1810292498423087104 |