Late Quaternary Variability of Arctic Sea Ice: Insights From Biomarker Proxy Records and Model Simulations

Over the last about four decades, coinciding with global warming and atmospheric CO2 increase, the extent and thickness of Arctic sea ice has decreased dramatically, a decrease much more rapid than predicted by climate models. The driving forces of this change are still not fully understood. In this...

Full description

Bibliographic Details
Main Authors: Stein, Rüdiger, Kolling, Henriette, Kremer, Anne, Fahl, Kirsten, Gierz, Paul, Lohmann, Gerrit
Format: Conference Object
Language:unknown
Published: 2017
Subjects:
Online Access:https://epic.awi.de/id/eprint/46664/
https://hdl.handle.net/10013/epic.066b41f8-3f83-48e1-9dd8-36aa6d33dafe
id ftawi:oai:epic.awi.de:46664
record_format openpolar
spelling ftawi:oai:epic.awi.de:46664 2024-09-15T17:51:30+00:00 Late Quaternary Variability of Arctic Sea Ice: Insights From Biomarker Proxy Records and Model Simulations Stein, Rüdiger Kolling, Henriette Kremer, Anne Fahl, Kirsten Gierz, Paul Lohmann, Gerrit 2017-12-15 https://epic.awi.de/id/eprint/46664/ https://hdl.handle.net/10013/epic.066b41f8-3f83-48e1-9dd8-36aa6d33dafe unknown Stein, R. orcid:0000-0002-4453-9564 , Kolling, H. , Kremer, A. , Fahl, K. orcid:0000-0001-9317-4656 , Gierz, P. orcid:0000-0002-4512-087X and Lohmann, G. orcid:0000-0003-2089-733X (2017) Late Quaternary Variability of Arctic Sea Ice: Insights From Biomarker Proxy Records and Model Simulations , AGU Fall Meting 2017, New Orleans, USA, 11 December 2017 - 15 December 2017 . hdl:10013/epic.066b41f8-3f83-48e1-9dd8-36aa6d33dafe EPIC3AGU Fall Meting 2017, New Orleans, USA, 2017-12-11-2017-12-15 Conference notRev 2017 ftawi 2024-06-24T04:19:47Z Over the last about four decades, coinciding with global warming and atmospheric CO2 increase, the extent and thickness of Arctic sea ice has decreased dramatically, a decrease much more rapid than predicted by climate models. The driving forces of this change are still not fully understood. In this context, detailed paleoclimatic records going back beyond the timescale of direct observations, i.e., high-resolution Holocene records but also records representing more distant warm periods, may help to to distinguish and quantify more precisely the natural and anthropogenic greenhouse gas forcing of global climate change and related sea ice decrease. Here, we concentrate on sea ice biomarker records representing the penultimate glacial/last interglacial (MIS 6/MIS 5e) and the Holocene time intervals. Our proxy records are compared with climate model simulations using a coupled atmosphere-ocean general circulation model (AOGCM). Based on our data, polynya-type sea-ice conditions probably occurred off the major ice sheets along the northern Barents and East Siberian continental margins during late MIS 6. Furthermore, we demonstrate that even during MIS 5e, i.e., a time interval when the high latitudes have been significantly warmer than today, sea ice existed in the central Arctic Ocean during summer, whereas sea ice was significantly reduced along the Barents Sea continental margin influenced by Atlantic Water inflow. Assuming a closed Bering Strait (no Pacific Water inflow) during early MIS 5, model simulations point to a significantly reduced sea ice cover in the central Arctic Ocean, a scenario that is however not supported by the proxy record and thus seems to be less realistic. Our Holocene biomarker proxy records from the Chukchi Sea indicate that main factors controlling the millennial Holocene variability in sea ice are probably changes in surface water and heat flow from the Pacific into the Arctic Ocean as well as the long-term decrease in summer insolation. Here, increased Pacific Water inflow (and heat ... Conference Object Arctic Arctic Ocean Barents Sea Bering Strait Chukchi Chukchi Sea Climate change Global warming Sea ice Alfred Wegener Institute for Polar- and Marine Research (AWI): ePIC (electronic Publication Information Center)
institution Open Polar
collection Alfred Wegener Institute for Polar- and Marine Research (AWI): ePIC (electronic Publication Information Center)
op_collection_id ftawi
language unknown
description Over the last about four decades, coinciding with global warming and atmospheric CO2 increase, the extent and thickness of Arctic sea ice has decreased dramatically, a decrease much more rapid than predicted by climate models. The driving forces of this change are still not fully understood. In this context, detailed paleoclimatic records going back beyond the timescale of direct observations, i.e., high-resolution Holocene records but also records representing more distant warm periods, may help to to distinguish and quantify more precisely the natural and anthropogenic greenhouse gas forcing of global climate change and related sea ice decrease. Here, we concentrate on sea ice biomarker records representing the penultimate glacial/last interglacial (MIS 6/MIS 5e) and the Holocene time intervals. Our proxy records are compared with climate model simulations using a coupled atmosphere-ocean general circulation model (AOGCM). Based on our data, polynya-type sea-ice conditions probably occurred off the major ice sheets along the northern Barents and East Siberian continental margins during late MIS 6. Furthermore, we demonstrate that even during MIS 5e, i.e., a time interval when the high latitudes have been significantly warmer than today, sea ice existed in the central Arctic Ocean during summer, whereas sea ice was significantly reduced along the Barents Sea continental margin influenced by Atlantic Water inflow. Assuming a closed Bering Strait (no Pacific Water inflow) during early MIS 5, model simulations point to a significantly reduced sea ice cover in the central Arctic Ocean, a scenario that is however not supported by the proxy record and thus seems to be less realistic. Our Holocene biomarker proxy records from the Chukchi Sea indicate that main factors controlling the millennial Holocene variability in sea ice are probably changes in surface water and heat flow from the Pacific into the Arctic Ocean as well as the long-term decrease in summer insolation. Here, increased Pacific Water inflow (and heat ...
format Conference Object
author Stein, Rüdiger
Kolling, Henriette
Kremer, Anne
Fahl, Kirsten
Gierz, Paul
Lohmann, Gerrit
spellingShingle Stein, Rüdiger
Kolling, Henriette
Kremer, Anne
Fahl, Kirsten
Gierz, Paul
Lohmann, Gerrit
Late Quaternary Variability of Arctic Sea Ice: Insights From Biomarker Proxy Records and Model Simulations
author_facet Stein, Rüdiger
Kolling, Henriette
Kremer, Anne
Fahl, Kirsten
Gierz, Paul
Lohmann, Gerrit
author_sort Stein, Rüdiger
title Late Quaternary Variability of Arctic Sea Ice: Insights From Biomarker Proxy Records and Model Simulations
title_short Late Quaternary Variability of Arctic Sea Ice: Insights From Biomarker Proxy Records and Model Simulations
title_full Late Quaternary Variability of Arctic Sea Ice: Insights From Biomarker Proxy Records and Model Simulations
title_fullStr Late Quaternary Variability of Arctic Sea Ice: Insights From Biomarker Proxy Records and Model Simulations
title_full_unstemmed Late Quaternary Variability of Arctic Sea Ice: Insights From Biomarker Proxy Records and Model Simulations
title_sort late quaternary variability of arctic sea ice: insights from biomarker proxy records and model simulations
publishDate 2017
url https://epic.awi.de/id/eprint/46664/
https://hdl.handle.net/10013/epic.066b41f8-3f83-48e1-9dd8-36aa6d33dafe
genre Arctic
Arctic Ocean
Barents Sea
Bering Strait
Chukchi
Chukchi Sea
Climate change
Global warming
Sea ice
genre_facet Arctic
Arctic Ocean
Barents Sea
Bering Strait
Chukchi
Chukchi Sea
Climate change
Global warming
Sea ice
op_source EPIC3AGU Fall Meting 2017, New Orleans, USA, 2017-12-11-2017-12-15
op_relation Stein, R. orcid:0000-0002-4453-9564 , Kolling, H. , Kremer, A. , Fahl, K. orcid:0000-0001-9317-4656 , Gierz, P. orcid:0000-0002-4512-087X and Lohmann, G. orcid:0000-0003-2089-733X (2017) Late Quaternary Variability of Arctic Sea Ice: Insights From Biomarker Proxy Records and Model Simulations , AGU Fall Meting 2017, New Orleans, USA, 11 December 2017 - 15 December 2017 . hdl:10013/epic.066b41f8-3f83-48e1-9dd8-36aa6d33dafe
_version_ 1810293418646044672