Stratospheric ozone loss in the Arctic winters between 2005 and 2013 derived with ACE-FTS measurements

Stratospheric ozone loss inside the Arctic polar vortex for the winters between 2004–2005 and 2012–2013 has been quantified using measurements from the space-borne Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS). For the first time, an evaluation has been performed of six d...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: Griffin, Debora, Walker, Kaley A., Wohltmann, Ingo, Dhomse, Sandip, Rex, Markus, Chipperfield, M. P., Feng, Wuhu, Manney, Gloria L., Liu, Jane, Tarasick, David W.
Format: Article in Journal/Newspaper
Language:unknown
Published: COPERNICUS GESELLSCHAFT MBH 2019
Subjects:
Online Access:https://epic.awi.de/id/eprint/45556/
https://epic.awi.de/id/eprint/45556/1/acp-19-577-2019.pdf
https://hdl.handle.net/10013/epic.ba1cfde5-e2ed-4f17-9ab0-2ecf2ee1b3c6
id ftawi:oai:epic.awi.de:45556
record_format openpolar
spelling ftawi:oai:epic.awi.de:45556 2024-09-15T17:51:45+00:00 Stratospheric ozone loss in the Arctic winters between 2005 and 2013 derived with ACE-FTS measurements Griffin, Debora Walker, Kaley A. Wohltmann, Ingo Dhomse, Sandip Rex, Markus Chipperfield, M. P. Feng, Wuhu Manney, Gloria L. Liu, Jane Tarasick, David W. 2019-01-16 application/pdf https://epic.awi.de/id/eprint/45556/ https://epic.awi.de/id/eprint/45556/1/acp-19-577-2019.pdf https://hdl.handle.net/10013/epic.ba1cfde5-e2ed-4f17-9ab0-2ecf2ee1b3c6 unknown COPERNICUS GESELLSCHAFT MBH https://epic.awi.de/id/eprint/45556/1/acp-19-577-2019.pdf Griffin, D. , Walker, K. A. , Wohltmann, I. orcid:0000-0003-4606-6788 , Dhomse, S. , Rex, M. orcid:0000-0001-7847-8221 , Chipperfield, M. P. , Feng, W. , Manney, G. L. , Liu, J. and Tarasick, D. W. (2019) Stratospheric ozone loss in the Arctic winters between 2005 and 2013 derived with ACE-FTS measurements , Atmospheric Chemistry and Physics, 19 (1), pp. 577-601 . doi:10.5194/acp-19-577-2019 <https://doi.org/10.5194/acp-19-577-2019> , hdl:10013/epic.ba1cfde5-e2ed-4f17-9ab0-2ecf2ee1b3c6 info:eu-repo/semantics/openAccess EPIC3Atmospheric Chemistry and Physics, COPERNICUS GESELLSCHAFT MBH, 19(1), pp. 577-601, ISSN: 1680-7316 Article isiRev info:eu-repo/semantics/article 2019 ftawi https://doi.org/10.5194/acp-19-577-2019 2024-06-24T04:18:50Z Stratospheric ozone loss inside the Arctic polar vortex for the winters between 2004–2005 and 2012–2013 has been quantified using measurements from the space-borne Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS). For the first time, an evaluation has been performed of six different ozone loss estimation methods based on the same single observational dataset to determine the Arctic ozone loss (mixing ratio loss profiles and the partial-column ozone losses between 380 and 550 K). The methods used are the tracer-tracer correlation, the artificial tracer correlation, the average vortex profile descent, and the passive subtraction with model output from both Lagrangian and Eulerian chemical transport models (CTMs). For the tracer-tracer, the artificial tracer, and the average vortex profile descent approaches, various tracers have been used that are also measured by ACE-FTS. From these seven tracers investigated (CH4, N2O, HF, OCS, CFC-11, CFC-12, and CFC-113), we found that CH4, N2O, HF, and CFC-12 are the most suitable tracers for investigating polar stratospheric ozone depletion with ACE-FTS v3.5. The ozone loss estimates (in terms of the mixing ratio as well as total column ozone) are generally in good agreement between the different methods and among the different tracers. However, using the average vortex profile descent technique typically leads to smaller maximum losses (by approximately 15–30 DU) compared to all other methods. The passive subtraction method using output from CTMs generally results in slightly larger losses compared to the techniques that use ACE-FTS measurements only. The ozone loss computed, using both measurements and models, shows the greatest loss during the 2010–2011 Arctic winter. For that year, our results show that maximum ozone loss (2.1–2.7 ppmv) occurred at 460 K. The estimated partial-column ozone loss inside the polar vortex (between 380 and 550 K) using the different methods is 66–103, 61–95, 59–96, 41–89, and 85–122 DU for March 2005, 2007, 2008, ... Article in Journal/Newspaper Arctic Alfred Wegener Institute for Polar- and Marine Research (AWI): ePIC (electronic Publication Information Center) Atmospheric Chemistry and Physics 19 1 577 601
institution Open Polar
collection Alfred Wegener Institute for Polar- and Marine Research (AWI): ePIC (electronic Publication Information Center)
op_collection_id ftawi
language unknown
description Stratospheric ozone loss inside the Arctic polar vortex for the winters between 2004–2005 and 2012–2013 has been quantified using measurements from the space-borne Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS). For the first time, an evaluation has been performed of six different ozone loss estimation methods based on the same single observational dataset to determine the Arctic ozone loss (mixing ratio loss profiles and the partial-column ozone losses between 380 and 550 K). The methods used are the tracer-tracer correlation, the artificial tracer correlation, the average vortex profile descent, and the passive subtraction with model output from both Lagrangian and Eulerian chemical transport models (CTMs). For the tracer-tracer, the artificial tracer, and the average vortex profile descent approaches, various tracers have been used that are also measured by ACE-FTS. From these seven tracers investigated (CH4, N2O, HF, OCS, CFC-11, CFC-12, and CFC-113), we found that CH4, N2O, HF, and CFC-12 are the most suitable tracers for investigating polar stratospheric ozone depletion with ACE-FTS v3.5. The ozone loss estimates (in terms of the mixing ratio as well as total column ozone) are generally in good agreement between the different methods and among the different tracers. However, using the average vortex profile descent technique typically leads to smaller maximum losses (by approximately 15–30 DU) compared to all other methods. The passive subtraction method using output from CTMs generally results in slightly larger losses compared to the techniques that use ACE-FTS measurements only. The ozone loss computed, using both measurements and models, shows the greatest loss during the 2010–2011 Arctic winter. For that year, our results show that maximum ozone loss (2.1–2.7 ppmv) occurred at 460 K. The estimated partial-column ozone loss inside the polar vortex (between 380 and 550 K) using the different methods is 66–103, 61–95, 59–96, 41–89, and 85–122 DU for March 2005, 2007, 2008, ...
format Article in Journal/Newspaper
author Griffin, Debora
Walker, Kaley A.
Wohltmann, Ingo
Dhomse, Sandip
Rex, Markus
Chipperfield, M. P.
Feng, Wuhu
Manney, Gloria L.
Liu, Jane
Tarasick, David W.
spellingShingle Griffin, Debora
Walker, Kaley A.
Wohltmann, Ingo
Dhomse, Sandip
Rex, Markus
Chipperfield, M. P.
Feng, Wuhu
Manney, Gloria L.
Liu, Jane
Tarasick, David W.
Stratospheric ozone loss in the Arctic winters between 2005 and 2013 derived with ACE-FTS measurements
author_facet Griffin, Debora
Walker, Kaley A.
Wohltmann, Ingo
Dhomse, Sandip
Rex, Markus
Chipperfield, M. P.
Feng, Wuhu
Manney, Gloria L.
Liu, Jane
Tarasick, David W.
author_sort Griffin, Debora
title Stratospheric ozone loss in the Arctic winters between 2005 and 2013 derived with ACE-FTS measurements
title_short Stratospheric ozone loss in the Arctic winters between 2005 and 2013 derived with ACE-FTS measurements
title_full Stratospheric ozone loss in the Arctic winters between 2005 and 2013 derived with ACE-FTS measurements
title_fullStr Stratospheric ozone loss in the Arctic winters between 2005 and 2013 derived with ACE-FTS measurements
title_full_unstemmed Stratospheric ozone loss in the Arctic winters between 2005 and 2013 derived with ACE-FTS measurements
title_sort stratospheric ozone loss in the arctic winters between 2005 and 2013 derived with ace-fts measurements
publisher COPERNICUS GESELLSCHAFT MBH
publishDate 2019
url https://epic.awi.de/id/eprint/45556/
https://epic.awi.de/id/eprint/45556/1/acp-19-577-2019.pdf
https://hdl.handle.net/10013/epic.ba1cfde5-e2ed-4f17-9ab0-2ecf2ee1b3c6
genre Arctic
genre_facet Arctic
op_source EPIC3Atmospheric Chemistry and Physics, COPERNICUS GESELLSCHAFT MBH, 19(1), pp. 577-601, ISSN: 1680-7316
op_relation https://epic.awi.de/id/eprint/45556/1/acp-19-577-2019.pdf
Griffin, D. , Walker, K. A. , Wohltmann, I. orcid:0000-0003-4606-6788 , Dhomse, S. , Rex, M. orcid:0000-0001-7847-8221 , Chipperfield, M. P. , Feng, W. , Manney, G. L. , Liu, J. and Tarasick, D. W. (2019) Stratospheric ozone loss in the Arctic winters between 2005 and 2013 derived with ACE-FTS measurements , Atmospheric Chemistry and Physics, 19 (1), pp. 577-601 . doi:10.5194/acp-19-577-2019 <https://doi.org/10.5194/acp-19-577-2019> , hdl:10013/epic.ba1cfde5-e2ed-4f17-9ab0-2ecf2ee1b3c6
op_rights info:eu-repo/semantics/openAccess
op_doi https://doi.org/10.5194/acp-19-577-2019
container_title Atmospheric Chemistry and Physics
container_volume 19
container_issue 1
container_start_page 577
op_container_end_page 601
_version_ 1810293737509617664