A 60-year ice-core record of regional climate from Adélie Land, coastal Antarctica

A 22.4 m-long shallow firn core was extracted during the 2006/2007 field season from coastal Adélie Land. Annual layer counting based on subannual analyses of δ18O and major chemical components was combined with 5 reference years associated with nuclear tests and non-retreat of summer sea ice to bui...

Full description

Bibliographic Details
Published in:The Cryosphere
Main Authors: Goursaud, Sentia, Masson-Delmotte, Valérie, Favier, Vincent, Preunkert, Susanne, Fily, Michel, Gallée, Hubert, Jourdain, Bruno, Legrand, Michel, Magand, Olivier, Minster, Bénédicte, Werner, Martin
Format: Article in Journal/Newspaper
Language:unknown
Published: Copernicus Publications 2017
Subjects:
Online Access:https://epic.awi.de/id/eprint/43831/
https://epic.awi.de/id/eprint/43831/1/Goursaud_2017.pdf
https://doi.org/10.5194/tc-11-343-2017
https://hdl.handle.net/10013/epic.50430
https://hdl.handle.net/10013/epic.50430.d001
id ftawi:oai:epic.awi.de:43831
record_format openpolar
institution Open Polar
collection Alfred Wegener Institute for Polar- and Marine Research (AWI): ePIC (electronic Publication Information Center)
op_collection_id ftawi
language unknown
description A 22.4 m-long shallow firn core was extracted during the 2006/2007 field season from coastal Adélie Land. Annual layer counting based on subannual analyses of δ18O and major chemical components was combined with 5 reference years associated with nuclear tests and non-retreat of summer sea ice to build the initial ice-core chronology (1946– 2006), stressing uncertain counting for 8 years. We focus here on the resulting δ18O and accumulation records. With an average value of 21.8 ± 6.9 cm w.e. yr−1 , local accumulation shows multi-decadal variations peaking in the 1980s, but no long-term trend. Similar results are obtained for δ18O, also characterised by a remarkably low and variable amplitude of the seasonal cycle. The ice-core records are compared with regional records of temperature, stake area accumulation measurements and variations in sea-ice extent, and outputs from two models nudged to ERA (European Reanalysis) atmospheric reanalyses: the high-resolution atmospheric general circulation model (AGCM), including stable water isotopes ECHAM5-wiso (European Centre Hamburg model), and the regional atmospheric model Modèle Atmosphérique Régional ( AR). A significant linear correlation is identified between decadal variations in δ18O and regional temperature. No significant relationship appears with regional sea-ice extent. A weak and significant correlation appears with Dumont d’Urville wind speed, increasing after 1979. The model-data comparison highlights the inadequacy of ECHAM5-wiso simulations prior to 1979, possibly due to the lack of data assimilation to constrain atmospheric reanalyses. Systematic biases are identified in the ECHAM5-wiso simulation, such as an overestimation of the mean accumulation rate and its interannual variability, a strong cold bias and an underestimation of the mean δ18O value and its interannual variability. As a result, relationships between simulated δ18O and temperature are weaker than observed. Such systematic precipitation and temperature biases are not displayed by MAR, suggesting that the model resolution plays a key role along the Antarctic ice sheet coastal topography. Interannual variations in ECHAM5-wiso temperature and precipitation accurately capture signals from meteorological data and stake observations and are used to refine the initial ice-core chronology within 2 years. After this adjustment, remarkable positive (negative) δ18O anomalies are identified in the ice-core record and the ECHAM5-wiso simulation in 1986 and 2002 (1998–1999), respectively. Despite uncertainties associated with post-deposition processes and signal-to-noise issues, in one single coastal ice-core record, we conclude that the S1C1 core can correctly capture major annual anomalies in δ18O as well as multi-decadal variations. These findings highlight the importance of improving the network of coastal high-resolution ice-core records, and stress the skills and limitations of atmospheric models for accumulation and δ18O in coastal Antarctic areas. This is particularly important for the overall East Antarctic ice sheet mass balance.
format Article in Journal/Newspaper
author Goursaud, Sentia
Masson-Delmotte, Valérie
Favier, Vincent
Preunkert, Susanne
Fily, Michel
Gallée, Hubert
Jourdain, Bruno
Legrand, Michel
Magand, Olivier
Minster, Bénédicte
Werner, Martin
spellingShingle Goursaud, Sentia
Masson-Delmotte, Valérie
Favier, Vincent
Preunkert, Susanne
Fily, Michel
Gallée, Hubert
Jourdain, Bruno
Legrand, Michel
Magand, Olivier
Minster, Bénédicte
Werner, Martin
A 60-year ice-core record of regional climate from Adélie Land, coastal Antarctica
author_facet Goursaud, Sentia
Masson-Delmotte, Valérie
Favier, Vincent
Preunkert, Susanne
Fily, Michel
Gallée, Hubert
Jourdain, Bruno
Legrand, Michel
Magand, Olivier
Minster, Bénédicte
Werner, Martin
author_sort Goursaud, Sentia
title A 60-year ice-core record of regional climate from Adélie Land, coastal Antarctica
title_short A 60-year ice-core record of regional climate from Adélie Land, coastal Antarctica
title_full A 60-year ice-core record of regional climate from Adélie Land, coastal Antarctica
title_fullStr A 60-year ice-core record of regional climate from Adélie Land, coastal Antarctica
title_full_unstemmed A 60-year ice-core record of regional climate from Adélie Land, coastal Antarctica
title_sort 60-year ice-core record of regional climate from adélie land, coastal antarctica
publisher Copernicus Publications
publishDate 2017
url https://epic.awi.de/id/eprint/43831/
https://epic.awi.de/id/eprint/43831/1/Goursaud_2017.pdf
https://doi.org/10.5194/tc-11-343-2017
https://hdl.handle.net/10013/epic.50430
https://hdl.handle.net/10013/epic.50430.d001
long_lat ENVELOPE(140.000,140.000,-66.667,-66.667)
geographic Antarctic
Dumont d’Urville
East Antarctic Ice Sheet
The Antarctic
geographic_facet Antarctic
Dumont d’Urville
East Antarctic Ice Sheet
The Antarctic
genre Antarc*
Antarctic
Antarctica
ice core
Ice Sheet
Sea ice
The Cryosphere
genre_facet Antarc*
Antarctic
Antarctica
ice core
Ice Sheet
Sea ice
The Cryosphere
op_source EPIC3The Cryosphere, Copernicus Publications, 11(1), pp. 343-362, ISSN: 1994-0424
op_relation https://epic.awi.de/id/eprint/43831/1/Goursaud_2017.pdf
https://hdl.handle.net/10013/epic.50430.d001
Goursaud, S. , Masson-Delmotte, V. , Favier, V. , Preunkert, S. , Fily, M. , Gallée, H. , Jourdain, B. , Legrand, M. , Magand, O. , Minster, B. and Werner, M. orcid:0000-0002-6473-0243 (2017) A 60-year ice-core record of regional climate from Adélie Land, coastal Antarctica , The Cryosphere, 11 (1), pp. 343-362 . doi:10.5194/tc-11-343-2017 <https://doi.org/10.5194/tc-11-343-2017> , hdl:10013/epic.50430
op_doi https://doi.org/10.5194/tc-11-343-2017
container_title The Cryosphere
container_volume 11
container_issue 1
container_start_page 343
op_container_end_page 362
_version_ 1766135444926365696
spelling ftawi:oai:epic.awi.de:43831 2023-05-15T13:40:28+02:00 A 60-year ice-core record of regional climate from Adélie Land, coastal Antarctica Goursaud, Sentia Masson-Delmotte, Valérie Favier, Vincent Preunkert, Susanne Fily, Michel Gallée, Hubert Jourdain, Bruno Legrand, Michel Magand, Olivier Minster, Bénédicte Werner, Martin 2017-02-01 application/pdf https://epic.awi.de/id/eprint/43831/ https://epic.awi.de/id/eprint/43831/1/Goursaud_2017.pdf https://doi.org/10.5194/tc-11-343-2017 https://hdl.handle.net/10013/epic.50430 https://hdl.handle.net/10013/epic.50430.d001 unknown Copernicus Publications https://epic.awi.de/id/eprint/43831/1/Goursaud_2017.pdf https://hdl.handle.net/10013/epic.50430.d001 Goursaud, S. , Masson-Delmotte, V. , Favier, V. , Preunkert, S. , Fily, M. , Gallée, H. , Jourdain, B. , Legrand, M. , Magand, O. , Minster, B. and Werner, M. orcid:0000-0002-6473-0243 (2017) A 60-year ice-core record of regional climate from Adélie Land, coastal Antarctica , The Cryosphere, 11 (1), pp. 343-362 . doi:10.5194/tc-11-343-2017 <https://doi.org/10.5194/tc-11-343-2017> , hdl:10013/epic.50430 EPIC3The Cryosphere, Copernicus Publications, 11(1), pp. 343-362, ISSN: 1994-0424 Article isiRev 2017 ftawi https://doi.org/10.5194/tc-11-343-2017 2021-12-24T15:42:38Z A 22.4 m-long shallow firn core was extracted during the 2006/2007 field season from coastal Adélie Land. Annual layer counting based on subannual analyses of δ18O and major chemical components was combined with 5 reference years associated with nuclear tests and non-retreat of summer sea ice to build the initial ice-core chronology (1946– 2006), stressing uncertain counting for 8 years. We focus here on the resulting δ18O and accumulation records. With an average value of 21.8 ± 6.9 cm w.e. yr−1 , local accumulation shows multi-decadal variations peaking in the 1980s, but no long-term trend. Similar results are obtained for δ18O, also characterised by a remarkably low and variable amplitude of the seasonal cycle. The ice-core records are compared with regional records of temperature, stake area accumulation measurements and variations in sea-ice extent, and outputs from two models nudged to ERA (European Reanalysis) atmospheric reanalyses: the high-resolution atmospheric general circulation model (AGCM), including stable water isotopes ECHAM5-wiso (European Centre Hamburg model), and the regional atmospheric model Modèle Atmosphérique Régional ( AR). A significant linear correlation is identified between decadal variations in δ18O and regional temperature. No significant relationship appears with regional sea-ice extent. A weak and significant correlation appears with Dumont d’Urville wind speed, increasing after 1979. The model-data comparison highlights the inadequacy of ECHAM5-wiso simulations prior to 1979, possibly due to the lack of data assimilation to constrain atmospheric reanalyses. Systematic biases are identified in the ECHAM5-wiso simulation, such as an overestimation of the mean accumulation rate and its interannual variability, a strong cold bias and an underestimation of the mean δ18O value and its interannual variability. As a result, relationships between simulated δ18O and temperature are weaker than observed. Such systematic precipitation and temperature biases are not displayed by MAR, suggesting that the model resolution plays a key role along the Antarctic ice sheet coastal topography. Interannual variations in ECHAM5-wiso temperature and precipitation accurately capture signals from meteorological data and stake observations and are used to refine the initial ice-core chronology within 2 years. After this adjustment, remarkable positive (negative) δ18O anomalies are identified in the ice-core record and the ECHAM5-wiso simulation in 1986 and 2002 (1998–1999), respectively. Despite uncertainties associated with post-deposition processes and signal-to-noise issues, in one single coastal ice-core record, we conclude that the S1C1 core can correctly capture major annual anomalies in δ18O as well as multi-decadal variations. These findings highlight the importance of improving the network of coastal high-resolution ice-core records, and stress the skills and limitations of atmospheric models for accumulation and δ18O in coastal Antarctic areas. This is particularly important for the overall East Antarctic ice sheet mass balance. Article in Journal/Newspaper Antarc* Antarctic Antarctica ice core Ice Sheet Sea ice The Cryosphere Alfred Wegener Institute for Polar- and Marine Research (AWI): ePIC (electronic Publication Information Center) Antarctic Dumont d’Urville ENVELOPE(140.000,140.000,-66.667,-66.667) East Antarctic Ice Sheet The Antarctic The Cryosphere 11 1 343 362