What controls the isotopic composition of Greenland surface snow?

Water stable isotopes in Greenland ice core data provide key paleoclimatic information, and have been compared with precipitation isotopic composition simulated by isotopically enabled atmospheric models. However, post-depositional processes linked with snow metamorphism remain poorly documented. Fo...

Full description

Bibliographic Details
Published in:Climate of the Past
Main Authors: Steen-Larsen, H. C., Masson-Delmotte, V., Hirabayashi, M., Winkler, R., Satow, K., Prié, F., Bayou, N., Brun, E., Cuffey, K. M., Dahl-Jensen, D., Dumont, M., Guillevic, M., Kipfstuhl, Sepp, Landais, A., Popp, T., Risi, C., Steffen, K., Stenni, B., Sveinbjörnsdottír, A. E.
Format: Article in Journal/Newspaper
Language:unknown
Published: COPERNICUS GESELLSCHAFT MBH 2014
Subjects:
Online Access:https://epic.awi.de/id/eprint/42227/
https://epic.awi.de/id/eprint/42227/1/cp-10-377-2014.pdf
https://doi.org/10.5194/cp-10-377-2014
https://hdl.handle.net/10013/epic.48951
https://hdl.handle.net/10013/epic.48951.d001
id ftawi:oai:epic.awi.de:42227
record_format openpolar
spelling ftawi:oai:epic.awi.de:42227 2024-09-15T18:09:05+00:00 What controls the isotopic composition of Greenland surface snow? Steen-Larsen, H. C. Masson-Delmotte, V. Hirabayashi, M. Winkler, R. Satow, K. Prié, F. Bayou, N. Brun, E. Cuffey, K. M. Dahl-Jensen, D. Dumont, M. Guillevic, M. Kipfstuhl, Sepp Landais, A. Popp, T. Risi, C. Steffen, K. Stenni, B. Sveinbjörnsdottír, A. E. 2014 application/pdf https://epic.awi.de/id/eprint/42227/ https://epic.awi.de/id/eprint/42227/1/cp-10-377-2014.pdf https://doi.org/10.5194/cp-10-377-2014 https://hdl.handle.net/10013/epic.48951 https://hdl.handle.net/10013/epic.48951.d001 unknown COPERNICUS GESELLSCHAFT MBH https://epic.awi.de/id/eprint/42227/1/cp-10-377-2014.pdf https://hdl.handle.net/10013/epic.48951.d001 Steen-Larsen, H. C. , Masson-Delmotte, V. , Hirabayashi, M. , Winkler, R. , Satow, K. , Prié, F. , Bayou, N. , Brun, E. , Cuffey, K. M. , Dahl-Jensen, D. , Dumont, M. , Guillevic, M. , Kipfstuhl, S. , Landais, A. , Popp, T. , Risi, C. , Steffen, K. , Stenni, B. and Sveinbjörnsdottír, A. E. (2014) What controls the isotopic composition of Greenland surface snow? , Climate of the Past, 10 (1), pp. 377-392 . doi:10.5194/cp-10-377-2014 <https://doi.org/10.5194/cp-10-377-2014> , hdl:10013/epic.48951 EPIC3Climate of the Past, COPERNICUS GESELLSCHAFT MBH, 10(1), pp. 377-392, ISSN: 1814-9332 Article isiRev 2014 ftawi https://doi.org/10.5194/cp-10-377-2014 2024-06-24T04:15:36Z Water stable isotopes in Greenland ice core data provide key paleoclimatic information, and have been compared with precipitation isotopic composition simulated by isotopically enabled atmospheric models. However, post-depositional processes linked with snow metamorphism remain poorly documented. For this purpose, monitoring of the isotopic composition (δ18O, δD) of near-surface water vapor, precipitation and samples of the top (0.5 cm) snow surface has been conducted during two summers (2011–2012) at NEEM, NW Greenland. The samples also include a subset of 17O-excess measurements over 4 days, and the measurements span the 2012 Greenland heat wave. Our observations are consistent with calculations assuming isotopic equilibrium between surface snow and water vapor. We observe a strong correlation between near-surface vapor δ18O and air temperature (0.85 ± 0.11‰ °C−1 (R = 0.76) for 2012). The correlation with air temperature is not observed in precipitation data or surface snow data. Deuterium excess (d-excess) is strongly anti-correlated with δ18O with a stronger slope for vapor than for precipitation and snow surface data. During nine 1–5-day periods between precipitation events, our data demonstrate parallel changes of δ18O and d-excess in surface snow and near-surface vapor. The changes in δ18O of the vapor are similar or larger than those of the snow δ18O. It is estimated using the CROCUS snow model that 6 to 20% of the surface snow mass is exchanged with the atmosphere. In our data, the sign of surface snow isotopic changes is not related to the sign or magnitude of sublimation or deposition. Comparisons with atmospheric models show that day-to-day variations in near-surface vapor isotopic composition are driven by synoptic variations and changes in air mass trajectories and distillation histories. We suggest that, in between precipitation events, changes in the surface snow isotopic composition are driven by these changes in near-surface vapor isotopic composition. This is consistent with an estimated 60% ... Article in Journal/Newspaper Greenland Greenland ice core ice core Alfred Wegener Institute for Polar- and Marine Research (AWI): ePIC (electronic Publication Information Center) Climate of the Past 10 1 377 392
institution Open Polar
collection Alfred Wegener Institute for Polar- and Marine Research (AWI): ePIC (electronic Publication Information Center)
op_collection_id ftawi
language unknown
description Water stable isotopes in Greenland ice core data provide key paleoclimatic information, and have been compared with precipitation isotopic composition simulated by isotopically enabled atmospheric models. However, post-depositional processes linked with snow metamorphism remain poorly documented. For this purpose, monitoring of the isotopic composition (δ18O, δD) of near-surface water vapor, precipitation and samples of the top (0.5 cm) snow surface has been conducted during two summers (2011–2012) at NEEM, NW Greenland. The samples also include a subset of 17O-excess measurements over 4 days, and the measurements span the 2012 Greenland heat wave. Our observations are consistent with calculations assuming isotopic equilibrium between surface snow and water vapor. We observe a strong correlation between near-surface vapor δ18O and air temperature (0.85 ± 0.11‰ °C−1 (R = 0.76) for 2012). The correlation with air temperature is not observed in precipitation data or surface snow data. Deuterium excess (d-excess) is strongly anti-correlated with δ18O with a stronger slope for vapor than for precipitation and snow surface data. During nine 1–5-day periods between precipitation events, our data demonstrate parallel changes of δ18O and d-excess in surface snow and near-surface vapor. The changes in δ18O of the vapor are similar or larger than those of the snow δ18O. It is estimated using the CROCUS snow model that 6 to 20% of the surface snow mass is exchanged with the atmosphere. In our data, the sign of surface snow isotopic changes is not related to the sign or magnitude of sublimation or deposition. Comparisons with atmospheric models show that day-to-day variations in near-surface vapor isotopic composition are driven by synoptic variations and changes in air mass trajectories and distillation histories. We suggest that, in between precipitation events, changes in the surface snow isotopic composition are driven by these changes in near-surface vapor isotopic composition. This is consistent with an estimated 60% ...
format Article in Journal/Newspaper
author Steen-Larsen, H. C.
Masson-Delmotte, V.
Hirabayashi, M.
Winkler, R.
Satow, K.
Prié, F.
Bayou, N.
Brun, E.
Cuffey, K. M.
Dahl-Jensen, D.
Dumont, M.
Guillevic, M.
Kipfstuhl, Sepp
Landais, A.
Popp, T.
Risi, C.
Steffen, K.
Stenni, B.
Sveinbjörnsdottír, A. E.
spellingShingle Steen-Larsen, H. C.
Masson-Delmotte, V.
Hirabayashi, M.
Winkler, R.
Satow, K.
Prié, F.
Bayou, N.
Brun, E.
Cuffey, K. M.
Dahl-Jensen, D.
Dumont, M.
Guillevic, M.
Kipfstuhl, Sepp
Landais, A.
Popp, T.
Risi, C.
Steffen, K.
Stenni, B.
Sveinbjörnsdottír, A. E.
What controls the isotopic composition of Greenland surface snow?
author_facet Steen-Larsen, H. C.
Masson-Delmotte, V.
Hirabayashi, M.
Winkler, R.
Satow, K.
Prié, F.
Bayou, N.
Brun, E.
Cuffey, K. M.
Dahl-Jensen, D.
Dumont, M.
Guillevic, M.
Kipfstuhl, Sepp
Landais, A.
Popp, T.
Risi, C.
Steffen, K.
Stenni, B.
Sveinbjörnsdottír, A. E.
author_sort Steen-Larsen, H. C.
title What controls the isotopic composition of Greenland surface snow?
title_short What controls the isotopic composition of Greenland surface snow?
title_full What controls the isotopic composition of Greenland surface snow?
title_fullStr What controls the isotopic composition of Greenland surface snow?
title_full_unstemmed What controls the isotopic composition of Greenland surface snow?
title_sort what controls the isotopic composition of greenland surface snow?
publisher COPERNICUS GESELLSCHAFT MBH
publishDate 2014
url https://epic.awi.de/id/eprint/42227/
https://epic.awi.de/id/eprint/42227/1/cp-10-377-2014.pdf
https://doi.org/10.5194/cp-10-377-2014
https://hdl.handle.net/10013/epic.48951
https://hdl.handle.net/10013/epic.48951.d001
genre Greenland
Greenland ice core
ice core
genre_facet Greenland
Greenland ice core
ice core
op_source EPIC3Climate of the Past, COPERNICUS GESELLSCHAFT MBH, 10(1), pp. 377-392, ISSN: 1814-9332
op_relation https://epic.awi.de/id/eprint/42227/1/cp-10-377-2014.pdf
https://hdl.handle.net/10013/epic.48951.d001
Steen-Larsen, H. C. , Masson-Delmotte, V. , Hirabayashi, M. , Winkler, R. , Satow, K. , Prié, F. , Bayou, N. , Brun, E. , Cuffey, K. M. , Dahl-Jensen, D. , Dumont, M. , Guillevic, M. , Kipfstuhl, S. , Landais, A. , Popp, T. , Risi, C. , Steffen, K. , Stenni, B. and Sveinbjörnsdottír, A. E. (2014) What controls the isotopic composition of Greenland surface snow? , Climate of the Past, 10 (1), pp. 377-392 . doi:10.5194/cp-10-377-2014 <https://doi.org/10.5194/cp-10-377-2014> , hdl:10013/epic.48951
op_doi https://doi.org/10.5194/cp-10-377-2014
container_title Climate of the Past
container_volume 10
container_issue 1
container_start_page 377
op_container_end_page 392
_version_ 1810446487767744512