An important late summer aggregation of fin whales Balaenoptera physalus, little auks Alle alle and Brünnichs Guillemots Uria lomvia in the eastern Greenland Sea and Fram Strait: influence of hydrographic structures

The distribution at sea of upper trophic levels—seabirds and marine mammals—is depending on their food availability: high concentrations reflect high prey abundance and thus high biological production. Polar marine ecosystems are characterized by low biodiversity and high biological patchiness. The...

Full description

Bibliographic Details
Published in:Polar Biology
Main Authors: Joiris, Claude, Falck, Eva, D´Hert, Diederik, Jungblut, Simon, Boos, Karin
Format: Article in Journal/Newspaper
Language:unknown
Published: SPRINGER 2014
Subjects:
Online Access:https://epic.awi.de/id/eprint/41018/
https://hdl.handle.net/10013/epic.49007
Description
Summary:The distribution at sea of upper trophic levels—seabirds and marine mammals—is depending on their food availability: high concentrations reflect high prey abundance and thus high biological production. Polar marine ecosystems are characterized by low biodiversity and high biological patchiness. The distribution of predators, as a consequence, shows a similar patchiness. During two expeditions of icebreaking RV Polarstern in June–July 2011, biodiversity in the arctic marine zone north of 70°N was very low, with low numbers of species: 20 seabirds, eight cetaceans, five pinnipeds and polar bear. Moreover, a few species accounted for the majority in numbers: four bird species for 95 % of the total of 23,000 seabirds recorded during 700 transect counts: fulmar Fulmarus glacialis, kittiwake Rissa tridactyla, Brünnich’s guillemot Uria lomvia and little auk Alle alle. Among the marine mammals, 250 fin whales Balaenoptera physalus accounted for 80 % of the identified large cetaceans, 270 white-beaked dolphin Lagenorhynchus albirostris for 100 % of the small cetaceans and 180 harp seals Pagophilus groenlandica for 80 % of the identified pinnipeds. Their quantitative distribution was depending on water masses and oceanic fronts, large cetaceans—mainly fin whales—showing an important aggregation on the shelf slope off western Spitsbergen, as well as little auks and Brünnich’s guillemots. So that this zone, shelf slope and front of mixed Arctic/Atlantic Waters, showed unusually high seabird and cetacean concentrations. Seasonal factors possibly influencing their distribution are addressed.