Continuous discontinuities: comparing observed and modelled sea ice deformation features

The Arctic is highly sensitive to changes in the global climate. One of the most prominent examples in this context is the shrinking sea ice cover over the past decades. The impact of the change in ice coverage on the global climate requires a thorough understanding of ice dynamics, as drifting sea...

Full description

Bibliographic Details
Main Authors: Linow, Stefanie, Mohammadi Aragh, Mahdi, Dierking, Wolfgang, Losch, Martin
Format: Conference Object
Language:unknown
Published: 2016
Subjects:
Online Access:https://epic.awi.de/id/eprint/40946/
https://epic.awi.de/id/eprint/40946/1/livingplanet2016.pdf
https://hdl.handle.net/10013/epic.47924
https://hdl.handle.net/10013/epic.47924.d001
id ftawi:oai:epic.awi.de:40946
record_format openpolar
spelling ftawi:oai:epic.awi.de:40946 2024-09-15T18:34:38+00:00 Continuous discontinuities: comparing observed and modelled sea ice deformation features Linow, Stefanie Mohammadi Aragh, Mahdi Dierking, Wolfgang Losch, Martin 2016-05-10 application/pdf https://epic.awi.de/id/eprint/40946/ https://epic.awi.de/id/eprint/40946/1/livingplanet2016.pdf https://hdl.handle.net/10013/epic.47924 https://hdl.handle.net/10013/epic.47924.d001 unknown https://epic.awi.de/id/eprint/40946/1/livingplanet2016.pdf https://hdl.handle.net/10013/epic.47924.d001 Linow, S. , Mohammadi Aragh, M. , Dierking, W. orcid:0000-0002-5031-648X and Losch, M. orcid:0000-0002-3824-5244 (2016) Continuous discontinuities: comparing observed and modelled sea ice deformation features , ESA Living Planet Symposium, Prague, 9 May 2016 - 13 May 2016 . doi:10.13140/RG.2.1.3706.2009 <https://doi.org/10.13140/RG.2.1.3706.2009> , hdl:10013/epic.47924 EPIC3ESA Living Planet Symposium, Prague, 2016-05-09-2016-05-13Prague Conference notRev 2016 ftawi https://doi.org/10.13140/RG.2.1.3706.2009 2024-06-24T04:14:20Z The Arctic is highly sensitive to changes in the global climate. One of the most prominent examples in this context is the shrinking sea ice cover over the past decades. The impact of the change in ice coverage on the global climate requires a thorough understanding of ice dynamics, as drifting sea ice transports salt and heat and in this way influences ocean dynamics. Sea ice motion is mainly driven by wind, ocean currents and internal ice stress. Convergent ice motion causes features such as ridges and rubble fields, which change the momentum exchange between atmosphere, ice and ocean. Openings in the ice due to divergent motion increase the exchange of heat and matter between ocean and atmosphere. On time scales of days to weeks, linear kinematic features, such as leads and ridges, evolve on spatial scales ranging from meters to tens and hundreds of kilometers. These features also emerge in numerical sea ice models when the resolution of the simulations is increased to a few kilometers. While plausible, their realism in the simulations is yet unclear and requires a detailed evaluation, with the help of (in our case satellite-based) observations. We use Arctic-wide MITgcm simulations for 2006 at a spatial resolution of approximately 4km for a regional comparison with microwave satellite observations, e.g. from Synthetic Aperture Radar (SAR). We derive sea ice displacement from a sequence of satellite images by measuring the offset between matching patterns in different images. Discontinuities in the resulting velocity field indicate regions of instantaneous deformation that occur at some point in the time interval between the acquisition of the two SAR images used for displacement retrieval. The obtained quantities of deformation by divergence, shear and vorticity are scale-dependent. As a consequence, they depend on the spatial resolution of the SAR images and differ from the quantities calculated by the model. Hence, the comparison between model simulations and results of retrievals from remote sensing data ... Conference Object Sea ice Alfred Wegener Institute for Polar- and Marine Research (AWI): ePIC (electronic Publication Information Center)
institution Open Polar
collection Alfred Wegener Institute for Polar- and Marine Research (AWI): ePIC (electronic Publication Information Center)
op_collection_id ftawi
language unknown
description The Arctic is highly sensitive to changes in the global climate. One of the most prominent examples in this context is the shrinking sea ice cover over the past decades. The impact of the change in ice coverage on the global climate requires a thorough understanding of ice dynamics, as drifting sea ice transports salt and heat and in this way influences ocean dynamics. Sea ice motion is mainly driven by wind, ocean currents and internal ice stress. Convergent ice motion causes features such as ridges and rubble fields, which change the momentum exchange between atmosphere, ice and ocean. Openings in the ice due to divergent motion increase the exchange of heat and matter between ocean and atmosphere. On time scales of days to weeks, linear kinematic features, such as leads and ridges, evolve on spatial scales ranging from meters to tens and hundreds of kilometers. These features also emerge in numerical sea ice models when the resolution of the simulations is increased to a few kilometers. While plausible, their realism in the simulations is yet unclear and requires a detailed evaluation, with the help of (in our case satellite-based) observations. We use Arctic-wide MITgcm simulations for 2006 at a spatial resolution of approximately 4km for a regional comparison with microwave satellite observations, e.g. from Synthetic Aperture Radar (SAR). We derive sea ice displacement from a sequence of satellite images by measuring the offset between matching patterns in different images. Discontinuities in the resulting velocity field indicate regions of instantaneous deformation that occur at some point in the time interval between the acquisition of the two SAR images used for displacement retrieval. The obtained quantities of deformation by divergence, shear and vorticity are scale-dependent. As a consequence, they depend on the spatial resolution of the SAR images and differ from the quantities calculated by the model. Hence, the comparison between model simulations and results of retrievals from remote sensing data ...
format Conference Object
author Linow, Stefanie
Mohammadi Aragh, Mahdi
Dierking, Wolfgang
Losch, Martin
spellingShingle Linow, Stefanie
Mohammadi Aragh, Mahdi
Dierking, Wolfgang
Losch, Martin
Continuous discontinuities: comparing observed and modelled sea ice deformation features
author_facet Linow, Stefanie
Mohammadi Aragh, Mahdi
Dierking, Wolfgang
Losch, Martin
author_sort Linow, Stefanie
title Continuous discontinuities: comparing observed and modelled sea ice deformation features
title_short Continuous discontinuities: comparing observed and modelled sea ice deformation features
title_full Continuous discontinuities: comparing observed and modelled sea ice deformation features
title_fullStr Continuous discontinuities: comparing observed and modelled sea ice deformation features
title_full_unstemmed Continuous discontinuities: comparing observed and modelled sea ice deformation features
title_sort continuous discontinuities: comparing observed and modelled sea ice deformation features
publishDate 2016
url https://epic.awi.de/id/eprint/40946/
https://epic.awi.de/id/eprint/40946/1/livingplanet2016.pdf
https://hdl.handle.net/10013/epic.47924
https://hdl.handle.net/10013/epic.47924.d001
genre Sea ice
genre_facet Sea ice
op_source EPIC3ESA Living Planet Symposium, Prague, 2016-05-09-2016-05-13Prague
op_relation https://epic.awi.de/id/eprint/40946/1/livingplanet2016.pdf
https://hdl.handle.net/10013/epic.47924.d001
Linow, S. , Mohammadi Aragh, M. , Dierking, W. orcid:0000-0002-5031-648X and Losch, M. orcid:0000-0002-3824-5244 (2016) Continuous discontinuities: comparing observed and modelled sea ice deformation features , ESA Living Planet Symposium, Prague, 9 May 2016 - 13 May 2016 . doi:10.13140/RG.2.1.3706.2009 <https://doi.org/10.13140/RG.2.1.3706.2009> , hdl:10013/epic.47924
op_doi https://doi.org/10.13140/RG.2.1.3706.2009
_version_ 1810476556460490752