A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback

We present an approach to estimate the feedback from large-scale thawing of permafrost soils using a simplified, data-constrained model that combines three elements: soil carbon (C) maps and profiles to identify the distribution and type of C in permafrost soils; incubation experiments to quantify t...

Full description

Bibliographic Details
Published in:Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
Main Authors: Koven, Charles D., Schuur, Edward. A. G., Schädel, Christina, Bohn, Theodore, Burke, Eleanor, Chen, Guangsheng, Chen, Xiaodong, Ciais, Philippe, Grosse, Guido, Harden, Jennifer W., Hayes, Daniel J., Hugelius, Gustaf, Jafarov, Elchin E., Krinner, Gerhard, Kuhry, Peter, Lawrence, David M., MacDougall, Andrew H., Marchenko, Sergei S., McGuire, A. David, Natali, Sue M., Nicolsky, Dmitry J., Olefeldt, David, Peng, Shushi, Romanovsky, Vladimir E., Schaefer, Kevin M., Strauss, Jens, Treat, Claire C., Turetsky, Merritt
Format: Article in Journal/Newspaper
Language:unknown
Published: ROYAL SOC 2015
Subjects:
Online Access:https://epic.awi.de/id/eprint/38777/
http://rsta.royalsocietypublishing.org/lookup/doi/10.1098/rsta.2014.0423
https://hdl.handle.net/10013/epic.46075
id ftawi:oai:epic.awi.de:38777
record_format openpolar
institution Open Polar
collection Alfred Wegener Institute for Polar- and Marine Research (AWI): ePIC (electronic Publication Information Center)
op_collection_id ftawi
language unknown
description We present an approach to estimate the feedback from large-scale thawing of permafrost soils using a simplified, data-constrained model that combines three elements: soil carbon (C) maps and profiles to identify the distribution and type of C in permafrost soils; incubation experiments to quantify the rates of C lost after thaw; and models of soil thermal dynamics in response to climate warming. We call the approach the Permafrost Carbon Network Incubation–Panarctic Thermal scaling approach (PInc-PanTher). The approach assumes that C stocks do not decompose at all when frozen, but once thawed follow set decomposition trajectories as a function of soil temperature. The trajectories are determined according to a three-pool decomposition model fitted to incubation data using parameters specific to soil horizon types. We calculate litterfall C inputs required to maintain steady-state C balance for the current climate, and hold those inputs constant. Soil temperatures are taken from the soil thermal modules of ecosystem model simulations forced by a common set of future climate change anomalies under twowarming scenarios over the period 2010 to 2100. Under a medium warming scenario (RCP4.5), the approach projects permafrost soil C losses of 12.2–33.4 Pg C; under a high warming scenario (RCP8.5), the approach projects C losses of 27.9–112.6 Pg C. Projected C losses are roughly linearly proportional to global temperature changes across the two scenarios. These results indicate a global sensitivity of frozen soil C to climate change (γ sensitivity) of −14 to −19 PgC°C−1 on a 100 year time scale. For CH4 emissions, our approach assumes a fixed saturated area and that increases in CH4 emissions are related to increased heterotrophic respiration in anoxic soil, yielding CH4 emission increases of 7% and 35% for the RCP4.5 and RCP8.5 scenarios, respectively, which add an additional greenhouse gas forcing of approximately 10–18%. The simplified approach presented here neglects many important processes that may amplify or ...
format Article in Journal/Newspaper
author Koven, Charles D.
Schuur, Edward. A. G.
Schädel, Christina
Bohn, Theodore
Burke, Eleanor
Chen, Guangsheng
Chen, Xiaodong
Ciais, Philippe
Grosse, Guido
Harden, Jennifer W.
Hayes, Daniel J.
Hugelius, Gustaf
Jafarov, Elchin E.
Krinner, Gerhard
Kuhry, Peter
Lawrence, David M.
MacDougall, Andrew H.
Marchenko, Sergei S.
McGuire, A. David
Natali, Sue M.
Nicolsky, Dmitry J.
Olefeldt, David
Peng, Shushi
Romanovsky, Vladimir E.
Schaefer, Kevin M.
Strauss, Jens
Treat, Claire C.
Turetsky, Merritt
spellingShingle Koven, Charles D.
Schuur, Edward. A. G.
Schädel, Christina
Bohn, Theodore
Burke, Eleanor
Chen, Guangsheng
Chen, Xiaodong
Ciais, Philippe
Grosse, Guido
Harden, Jennifer W.
Hayes, Daniel J.
Hugelius, Gustaf
Jafarov, Elchin E.
Krinner, Gerhard
Kuhry, Peter
Lawrence, David M.
MacDougall, Andrew H.
Marchenko, Sergei S.
McGuire, A. David
Natali, Sue M.
Nicolsky, Dmitry J.
Olefeldt, David
Peng, Shushi
Romanovsky, Vladimir E.
Schaefer, Kevin M.
Strauss, Jens
Treat, Claire C.
Turetsky, Merritt
A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback
author_facet Koven, Charles D.
Schuur, Edward. A. G.
Schädel, Christina
Bohn, Theodore
Burke, Eleanor
Chen, Guangsheng
Chen, Xiaodong
Ciais, Philippe
Grosse, Guido
Harden, Jennifer W.
Hayes, Daniel J.
Hugelius, Gustaf
Jafarov, Elchin E.
Krinner, Gerhard
Kuhry, Peter
Lawrence, David M.
MacDougall, Andrew H.
Marchenko, Sergei S.
McGuire, A. David
Natali, Sue M.
Nicolsky, Dmitry J.
Olefeldt, David
Peng, Shushi
Romanovsky, Vladimir E.
Schaefer, Kevin M.
Strauss, Jens
Treat, Claire C.
Turetsky, Merritt
author_sort Koven, Charles D.
title A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback
title_short A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback
title_full A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback
title_fullStr A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback
title_full_unstemmed A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback
title_sort simplified, data-constrained approach to estimate the permafrost carbon–climate feedback
publisher ROYAL SOC
publishDate 2015
url https://epic.awi.de/id/eprint/38777/
http://rsta.royalsocietypublishing.org/lookup/doi/10.1098/rsta.2014.0423
https://hdl.handle.net/10013/epic.46075
genre permafrost
genre_facet permafrost
op_source EPIC3Proceedings of the Royal Society A-Mathematical Physical and Engineering Sciences, ROYAL SOC, 373, ISSN: 1364-5021
op_relation Koven, C. D. , Schuur, E. A. G. , Schädel, C. , Bohn, T. , Burke, E. , Chen, G. , Chen, X. , Ciais, P. , Grosse, G. orcid:0000-0001-5895-2141 , Harden, J. W. , Hayes, D. J. , Hugelius, G. , Jafarov, E. E. , Krinner, G. , Kuhry, P. , Lawrence, D. M. , MacDougall, A. H. , Marchenko, S. S. , McGuire, A. D. , Natali, S. M. , Nicolsky, D. J. , Olefeldt, D. , Peng, S. , Romanovsky, V. E. , Schaefer, K. M. , Strauss, J. orcid:0000-0003-4678-4982 , Treat, C. C. and Turetsky, M. (2015) A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback , Proceedings of the Royal Society A-Mathematical Physical and Engineering Sciences, 373 . doi:10.1098/rsta.2014.0423 <https://doi.org/10.1098/rsta.2014.0423> , hdl:10013/epic.46075
op_rights info:eu-repo/semantics/openAccess
op_doi https://doi.org/10.1098/rsta.2014.0423
container_title Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
container_volume 373
container_issue 2054
container_start_page 20140423
_version_ 1810471163425456128
spelling ftawi:oai:epic.awi.de:38777 2024-09-15T18:29:44+00:00 A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback Koven, Charles D. Schuur, Edward. A. G. Schädel, Christina Bohn, Theodore Burke, Eleanor Chen, Guangsheng Chen, Xiaodong Ciais, Philippe Grosse, Guido Harden, Jennifer W. Hayes, Daniel J. Hugelius, Gustaf Jafarov, Elchin E. Krinner, Gerhard Kuhry, Peter Lawrence, David M. MacDougall, Andrew H. Marchenko, Sergei S. McGuire, A. David Natali, Sue M. Nicolsky, Dmitry J. Olefeldt, David Peng, Shushi Romanovsky, Vladimir E. Schaefer, Kevin M. Strauss, Jens Treat, Claire C. Turetsky, Merritt 2015-09-05 https://epic.awi.de/id/eprint/38777/ http://rsta.royalsocietypublishing.org/lookup/doi/10.1098/rsta.2014.0423 https://hdl.handle.net/10013/epic.46075 unknown ROYAL SOC Koven, C. D. , Schuur, E. A. G. , Schädel, C. , Bohn, T. , Burke, E. , Chen, G. , Chen, X. , Ciais, P. , Grosse, G. orcid:0000-0001-5895-2141 , Harden, J. W. , Hayes, D. J. , Hugelius, G. , Jafarov, E. E. , Krinner, G. , Kuhry, P. , Lawrence, D. M. , MacDougall, A. H. , Marchenko, S. S. , McGuire, A. D. , Natali, S. M. , Nicolsky, D. J. , Olefeldt, D. , Peng, S. , Romanovsky, V. E. , Schaefer, K. M. , Strauss, J. orcid:0000-0003-4678-4982 , Treat, C. C. and Turetsky, M. (2015) A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback , Proceedings of the Royal Society A-Mathematical Physical and Engineering Sciences, 373 . doi:10.1098/rsta.2014.0423 <https://doi.org/10.1098/rsta.2014.0423> , hdl:10013/epic.46075 info:eu-repo/semantics/openAccess EPIC3Proceedings of the Royal Society A-Mathematical Physical and Engineering Sciences, ROYAL SOC, 373, ISSN: 1364-5021 Article isiRev info:eu-repo/semantics/article 2015 ftawi https://doi.org/10.1098/rsta.2014.0423 2024-06-24T04:12:21Z We present an approach to estimate the feedback from large-scale thawing of permafrost soils using a simplified, data-constrained model that combines three elements: soil carbon (C) maps and profiles to identify the distribution and type of C in permafrost soils; incubation experiments to quantify the rates of C lost after thaw; and models of soil thermal dynamics in response to climate warming. We call the approach the Permafrost Carbon Network Incubation–Panarctic Thermal scaling approach (PInc-PanTher). The approach assumes that C stocks do not decompose at all when frozen, but once thawed follow set decomposition trajectories as a function of soil temperature. The trajectories are determined according to a three-pool decomposition model fitted to incubation data using parameters specific to soil horizon types. We calculate litterfall C inputs required to maintain steady-state C balance for the current climate, and hold those inputs constant. Soil temperatures are taken from the soil thermal modules of ecosystem model simulations forced by a common set of future climate change anomalies under twowarming scenarios over the period 2010 to 2100. Under a medium warming scenario (RCP4.5), the approach projects permafrost soil C losses of 12.2–33.4 Pg C; under a high warming scenario (RCP8.5), the approach projects C losses of 27.9–112.6 Pg C. Projected C losses are roughly linearly proportional to global temperature changes across the two scenarios. These results indicate a global sensitivity of frozen soil C to climate change (γ sensitivity) of −14 to −19 PgC°C−1 on a 100 year time scale. For CH4 emissions, our approach assumes a fixed saturated area and that increases in CH4 emissions are related to increased heterotrophic respiration in anoxic soil, yielding CH4 emission increases of 7% and 35% for the RCP4.5 and RCP8.5 scenarios, respectively, which add an additional greenhouse gas forcing of approximately 10–18%. The simplified approach presented here neglects many important processes that may amplify or ... Article in Journal/Newspaper permafrost Alfred Wegener Institute for Polar- and Marine Research (AWI): ePIC (electronic Publication Information Center) Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 373 2054 20140423