Enthalpy benchmark experiments for numerical ice sheet models

We present benchmark experiments to test the implementation of enthalpy and the corresponding boundary conditions in numerical ice sheet models. Since we impose several assumptions on the experiment design, analytical solutions can be formulated for the proposed numerical experiments. The first expe...

Full description

Bibliographic Details
Published in:The Cryosphere
Main Authors: Kleiner, Thomas, Rückamp, Martin, Bondzio, Johannes H., Humbert, Angelika
Format: Article in Journal/Newspaper
Language:unknown
Published: Copernicus Publications 2015
Subjects:
Online Access:https://epic.awi.de/id/eprint/37264/
https://epic.awi.de/id/eprint/37264/1/tc-9-217-2015.pdf
http://www.the-cryosphere.net/9/217/2015/
https://hdl.handle.net/10013/epic.44957
https://hdl.handle.net/10013/epic.44957.d001
id ftawi:oai:epic.awi.de:37264
record_format openpolar
spelling ftawi:oai:epic.awi.de:37264 2023-05-15T16:40:24+02:00 Enthalpy benchmark experiments for numerical ice sheet models Kleiner, Thomas Rückamp, Martin Bondzio, Johannes H. Humbert, Angelika 2015-02-06 application/pdf https://epic.awi.de/id/eprint/37264/ https://epic.awi.de/id/eprint/37264/1/tc-9-217-2015.pdf http://www.the-cryosphere.net/9/217/2015/ https://hdl.handle.net/10013/epic.44957 https://hdl.handle.net/10013/epic.44957.d001 unknown Copernicus Publications https://epic.awi.de/id/eprint/37264/1/tc-9-217-2015.pdf https://hdl.handle.net/10013/epic.44957.d001 Kleiner, T. orcid:0000-0001-7825-5765 , Rückamp, M. orcid:0000-0003-2512-7238 , Bondzio, J. H. and Humbert, A. (2015) Enthalpy benchmark experiments for numerical ice sheet models , The Cryosphere, 9 (1), pp. 217-228 . doi:10.5194/tc-9-217-2015 <https://doi.org/10.5194/tc-9-217-2015> , hdl:10013/epic.44957 EPIC3The Cryosphere, Copernicus Publications, 9(1), pp. 217-228, ISSN: 1994-0416 Article isiRev 2015 ftawi https://doi.org/10.5194/tc-9-217-2015 2021-12-24T15:40:14Z We present benchmark experiments to test the implementation of enthalpy and the corresponding boundary conditions in numerical ice sheet models. Since we impose several assumptions on the experiment design, analytical solutions can be formulated for the proposed numerical experiments. The first experiment tests the functionality of the boundary condition scheme and the basal melt rate calculation during transient simulations. The second experiment addresses the steady-state enthalpy profile and the resulting position of the cold–temperate transition surface (CTS). For both experiments we assume ice flow in a parallel-sided slab decoupled from the thermal regime. We compare simulation results achieved by three different ice flow-models with these analytical solutions. The models agree well to the analytical solutions, if the change in conductivity between cold and temperate ice is properly considered in the model. In particular, the enthalpy gradient on the cold side of the CTS goes to zero in the limit of vanishing temperate-ice conductivity, as required from the physical jump conditions at the CTS. Article in Journal/Newspaper Ice Sheet The Cryosphere Alfred Wegener Institute for Polar- and Marine Research (AWI): ePIC (electronic Publication Information Center) The Cryosphere 9 1 217 228
institution Open Polar
collection Alfred Wegener Institute for Polar- and Marine Research (AWI): ePIC (electronic Publication Information Center)
op_collection_id ftawi
language unknown
description We present benchmark experiments to test the implementation of enthalpy and the corresponding boundary conditions in numerical ice sheet models. Since we impose several assumptions on the experiment design, analytical solutions can be formulated for the proposed numerical experiments. The first experiment tests the functionality of the boundary condition scheme and the basal melt rate calculation during transient simulations. The second experiment addresses the steady-state enthalpy profile and the resulting position of the cold–temperate transition surface (CTS). For both experiments we assume ice flow in a parallel-sided slab decoupled from the thermal regime. We compare simulation results achieved by three different ice flow-models with these analytical solutions. The models agree well to the analytical solutions, if the change in conductivity between cold and temperate ice is properly considered in the model. In particular, the enthalpy gradient on the cold side of the CTS goes to zero in the limit of vanishing temperate-ice conductivity, as required from the physical jump conditions at the CTS.
format Article in Journal/Newspaper
author Kleiner, Thomas
Rückamp, Martin
Bondzio, Johannes H.
Humbert, Angelika
spellingShingle Kleiner, Thomas
Rückamp, Martin
Bondzio, Johannes H.
Humbert, Angelika
Enthalpy benchmark experiments for numerical ice sheet models
author_facet Kleiner, Thomas
Rückamp, Martin
Bondzio, Johannes H.
Humbert, Angelika
author_sort Kleiner, Thomas
title Enthalpy benchmark experiments for numerical ice sheet models
title_short Enthalpy benchmark experiments for numerical ice sheet models
title_full Enthalpy benchmark experiments for numerical ice sheet models
title_fullStr Enthalpy benchmark experiments for numerical ice sheet models
title_full_unstemmed Enthalpy benchmark experiments for numerical ice sheet models
title_sort enthalpy benchmark experiments for numerical ice sheet models
publisher Copernicus Publications
publishDate 2015
url https://epic.awi.de/id/eprint/37264/
https://epic.awi.de/id/eprint/37264/1/tc-9-217-2015.pdf
http://www.the-cryosphere.net/9/217/2015/
https://hdl.handle.net/10013/epic.44957
https://hdl.handle.net/10013/epic.44957.d001
genre Ice Sheet
The Cryosphere
genre_facet Ice Sheet
The Cryosphere
op_source EPIC3The Cryosphere, Copernicus Publications, 9(1), pp. 217-228, ISSN: 1994-0416
op_relation https://epic.awi.de/id/eprint/37264/1/tc-9-217-2015.pdf
https://hdl.handle.net/10013/epic.44957.d001
Kleiner, T. orcid:0000-0001-7825-5765 , Rückamp, M. orcid:0000-0003-2512-7238 , Bondzio, J. H. and Humbert, A. (2015) Enthalpy benchmark experiments for numerical ice sheet models , The Cryosphere, 9 (1), pp. 217-228 . doi:10.5194/tc-9-217-2015 <https://doi.org/10.5194/tc-9-217-2015> , hdl:10013/epic.44957
op_doi https://doi.org/10.5194/tc-9-217-2015
container_title The Cryosphere
container_volume 9
container_issue 1
container_start_page 217
op_container_end_page 228
_version_ 1766030798304051200