DYNAMICS OF COLORED DISSOLVED ORGANIC MATTER IN THE CLIMATE CHANGING ENVIRONMENT OF NORTHERN SIBERIA

The Lena is one of the largest rivers in the world and is responsible, through its outflow to the Laptev Sea, for a significant fraction of the total fresh water and organic matter discharge into the Arctic Ocean. With the known effects of climate change in the Arctic and associated increase of perm...

Full description

Bibliographic Details
Main Authors: Goncalves Araujo, Rafael, Kraberg, Alexandra, Bracher, Astrid
Format: Conference Object
Language:unknown
Published: 2014
Subjects:
Online Access:https://epic.awi.de/id/eprint/37211/
https://epic.awi.de/id/eprint/37211/1/2014_Reklim_Rafa_Lena_Delta.pdf
https://hdl.handle.net/10013/epic.44898
https://hdl.handle.net/10013/epic.44898.d001
id ftawi:oai:epic.awi.de:37211
record_format openpolar
spelling ftawi:oai:epic.awi.de:37211 2024-09-15T17:53:37+00:00 DYNAMICS OF COLORED DISSOLVED ORGANIC MATTER IN THE CLIMATE CHANGING ENVIRONMENT OF NORTHERN SIBERIA Goncalves Araujo, Rafael Kraberg, Alexandra Bracher, Astrid 2014-10 application/pdf https://epic.awi.de/id/eprint/37211/ https://epic.awi.de/id/eprint/37211/1/2014_Reklim_Rafa_Lena_Delta.pdf https://hdl.handle.net/10013/epic.44898 https://hdl.handle.net/10013/epic.44898.d001 unknown https://epic.awi.de/id/eprint/37211/1/2014_Reklim_Rafa_Lena_Delta.pdf https://hdl.handle.net/10013/epic.44898.d001 Goncalves Araujo, R. , Kraberg, A. orcid:0000-0003-2571-2074 and Bracher, A. orcid:0000-0003-3025-5517 (2014) DYNAMICS OF COLORED DISSOLVED ORGANIC MATTER IN THE CLIMATE CHANGING ENVIRONMENT OF NORTHERN SIBERIA , REKLIM Conferenz . hdl:10013/epic.44898 EPIC3REKLIM Conferenz Conference notRev 2014 ftawi 2024-06-24T04:11:05Z The Lena is one of the largest rivers in the world and is responsible, through its outflow to the Laptev Sea, for a significant fraction of the total fresh water and organic matter discharge into the Arctic Ocean. With the known effects of climate change in the Arctic and associated increase of permafrost thaw rates, the Lena River discharge and consequent export of terrigenous dissolved organic matter (DOM) into the Arctic Ocean tends to increase. Such variations may affect the nutrients and carbon dynamics in the region with consequences for the primary production and the CO2 exchanges in the ocean-atmosphere boundary layer. Understanding the dynamics and optical properties of colored DOM (CDOM) is of great value for carbon cycle modelling since CDOM is the fraction of the DOM which interacts with light and can be detected by satellite ocean color remote sensing. In this context, this study aims to investigate the dynamics of CDOM regarding the hydrographical forcing in the Lena Delta region based on in situ data collected during the late summer 2013. Water column structure was assessed through temperature and salinity profiles acquired with CTD casts and the CDOM characterization and quantification were determined based on both absorption and fluorescence spectra obtained with a HORIBA© Aqualog spectrofluorometer. The CDOM absorption at 443nm (a443; used as a CDOM amount index) and the terrestrial and marine absorption slopes of CDOM [STER (275-295nm) and SMAR (350-400nm), respectively] were obtained based on the absorption spectra. The CDOM components were identified by analysis of the excitation-emission-matrices and based on the literature. a443 was directly (inversely) related with temperature (salinity), denoting the strong modulation of CDOM by the hydrographical forcing: the highest CDOM amounts with riverine compounds were related to the Lena River Plume, while the salty waters from Laptev Sea presented lower a443 and associated with marine compounds. Conference Object Arctic Ocean Climate change laptev Laptev Sea lena delta lena river permafrost Siberia Alfred Wegener Institute for Polar- and Marine Research (AWI): ePIC (electronic Publication Information Center)
institution Open Polar
collection Alfred Wegener Institute for Polar- and Marine Research (AWI): ePIC (electronic Publication Information Center)
op_collection_id ftawi
language unknown
description The Lena is one of the largest rivers in the world and is responsible, through its outflow to the Laptev Sea, for a significant fraction of the total fresh water and organic matter discharge into the Arctic Ocean. With the known effects of climate change in the Arctic and associated increase of permafrost thaw rates, the Lena River discharge and consequent export of terrigenous dissolved organic matter (DOM) into the Arctic Ocean tends to increase. Such variations may affect the nutrients and carbon dynamics in the region with consequences for the primary production and the CO2 exchanges in the ocean-atmosphere boundary layer. Understanding the dynamics and optical properties of colored DOM (CDOM) is of great value for carbon cycle modelling since CDOM is the fraction of the DOM which interacts with light and can be detected by satellite ocean color remote sensing. In this context, this study aims to investigate the dynamics of CDOM regarding the hydrographical forcing in the Lena Delta region based on in situ data collected during the late summer 2013. Water column structure was assessed through temperature and salinity profiles acquired with CTD casts and the CDOM characterization and quantification were determined based on both absorption and fluorescence spectra obtained with a HORIBA© Aqualog spectrofluorometer. The CDOM absorption at 443nm (a443; used as a CDOM amount index) and the terrestrial and marine absorption slopes of CDOM [STER (275-295nm) and SMAR (350-400nm), respectively] were obtained based on the absorption spectra. The CDOM components were identified by analysis of the excitation-emission-matrices and based on the literature. a443 was directly (inversely) related with temperature (salinity), denoting the strong modulation of CDOM by the hydrographical forcing: the highest CDOM amounts with riverine compounds were related to the Lena River Plume, while the salty waters from Laptev Sea presented lower a443 and associated with marine compounds.
format Conference Object
author Goncalves Araujo, Rafael
Kraberg, Alexandra
Bracher, Astrid
spellingShingle Goncalves Araujo, Rafael
Kraberg, Alexandra
Bracher, Astrid
DYNAMICS OF COLORED DISSOLVED ORGANIC MATTER IN THE CLIMATE CHANGING ENVIRONMENT OF NORTHERN SIBERIA
author_facet Goncalves Araujo, Rafael
Kraberg, Alexandra
Bracher, Astrid
author_sort Goncalves Araujo, Rafael
title DYNAMICS OF COLORED DISSOLVED ORGANIC MATTER IN THE CLIMATE CHANGING ENVIRONMENT OF NORTHERN SIBERIA
title_short DYNAMICS OF COLORED DISSOLVED ORGANIC MATTER IN THE CLIMATE CHANGING ENVIRONMENT OF NORTHERN SIBERIA
title_full DYNAMICS OF COLORED DISSOLVED ORGANIC MATTER IN THE CLIMATE CHANGING ENVIRONMENT OF NORTHERN SIBERIA
title_fullStr DYNAMICS OF COLORED DISSOLVED ORGANIC MATTER IN THE CLIMATE CHANGING ENVIRONMENT OF NORTHERN SIBERIA
title_full_unstemmed DYNAMICS OF COLORED DISSOLVED ORGANIC MATTER IN THE CLIMATE CHANGING ENVIRONMENT OF NORTHERN SIBERIA
title_sort dynamics of colored dissolved organic matter in the climate changing environment of northern siberia
publishDate 2014
url https://epic.awi.de/id/eprint/37211/
https://epic.awi.de/id/eprint/37211/1/2014_Reklim_Rafa_Lena_Delta.pdf
https://hdl.handle.net/10013/epic.44898
https://hdl.handle.net/10013/epic.44898.d001
genre Arctic Ocean
Climate change
laptev
Laptev Sea
lena delta
lena river
permafrost
Siberia
genre_facet Arctic Ocean
Climate change
laptev
Laptev Sea
lena delta
lena river
permafrost
Siberia
op_source EPIC3REKLIM Conferenz
op_relation https://epic.awi.de/id/eprint/37211/1/2014_Reklim_Rafa_Lena_Delta.pdf
https://hdl.handle.net/10013/epic.44898.d001
Goncalves Araujo, R. , Kraberg, A. orcid:0000-0003-2571-2074 and Bracher, A. orcid:0000-0003-3025-5517 (2014) DYNAMICS OF COLORED DISSOLVED ORGANIC MATTER IN THE CLIMATE CHANGING ENVIRONMENT OF NORTHERN SIBERIA , REKLIM Conferenz . hdl:10013/epic.44898
_version_ 1810429512522924032