Combined effects of ocean acidification and tidal emergence on the performance and gene expression in the intertidal brown seaweed Fucus serratus

Marine macroalgae are important components of coastal ecosystems, providing food and habitat for numerous species. Since the atmospheric CO2 concentration increases, the CO2 concentration of the upper surface layers of the global oceans increases as well, causing an alteration of the seawater chemis...

Full description

Bibliographic Details
Main Author: Stecher, Anique
Format: Thesis
Language:unknown
Published: 2011
Subjects:
Online Access:https://epic.awi.de/id/eprint/32301/
https://epic.awi.de/id/eprint/32301/1/Master_Thesis_AS.pdf
https://hdl.handle.net/10013/epic.40924
https://hdl.handle.net/10013/epic.40924.d001
Description
Summary:Marine macroalgae are important components of coastal ecosystems, providing food and habitat for numerous species. Since the atmospheric CO2 concentration increases, the CO2 concentration of the upper surface layers of the global oceans increases as well, causing an alteration of the seawater chemistry. This shift can affect marine macroalgae which depend on carbon to efficiently run photosynthesis. Thus, the performance of marine macroalgae might be influenced by ocean acidification with as yet unpredictable consequences for the entire ecosystem. Intertidal macroalgae are not only affected by enhanced atmospheric CO2 concentrations but also by severe alterations in their abiotic environment due to the diurnal tidal cycle (e.g. tidal emergence). This study aimed to provide the first data on the combined effects of enhanced CO2 and tidal emergence on the physiological performance and the expression of specific enzymes involved in carbon fixation in the common intertidal brown macroalga Fucus serratus. Furthermore, the applicability of molecular tools for this macroalgal species should be tested. F. serratus was cultured for two weeks at two different CO2 concentrations (280 and 1200 ppm) and two different tidal regimes (regular emergence and permanent submersion). Physiological traits were unaffected by enhanced CO2 concentrations and tidal emergence. Photosynthesis, growth and chlorophyll a content remained constant in each of the tested treatments. The insensitivity of physiological traits might be the result of an actively running carbon concentrating mechanism (CCM). By this CCM, photosynthesis of F. serratus is already carbon saturated at present CO2 concentrations. Gene expression analysis was performed by a quantitative real-time polymerase chain reaction (qRT-PCR), investigating the expression of genes encoding for carbonic anhydrase (CA), ribulose-1,5-bisphosphate carboxylase oxygenase (RubisCO) and phosphoenolpyruvate carboxykinase (PEPCK). Enhanced CO2 and tidal emergence did not affect the expression ...