Inorganics in Organics: Tracking down the Intrinsic Equilibriums between Organic Molecules and Trace Elements in Oceanic Waters

Recent developments in analytical instrumentation enable to describe biogeochemical processes in oceanic waters on a molecular level. This is the prerequisite to integrate biological and geochemical parameters and to develop chemical cycles on a global perspective. The state-of-the-art Fourier trans...

Full description

Bibliographic Details
Main Authors: Lechtenfeld, Oliver, Koch, Boris, Witt, M., Kattner, Gerhard
Format: Conference Object
Language:unknown
Published: 2010
Subjects:
Online Access:https://epic.awi.de/id/eprint/23685/
https://hdl.handle.net/10013/epic.36597
id ftawi:oai:epic.awi.de:23685
record_format openpolar
spelling ftawi:oai:epic.awi.de:23685 2023-05-15T18:26:02+02:00 Inorganics in Organics: Tracking down the Intrinsic Equilibriums between Organic Molecules and Trace Elements in Oceanic Waters Lechtenfeld, Oliver Koch, Boris Witt, M. Kattner, Gerhard 2010 https://epic.awi.de/id/eprint/23685/ https://hdl.handle.net/10013/epic.36597 unknown Lechtenfeld, O. , Koch, B. orcid:0000-0002-8453-731X , Witt, M. and Kattner, G. (2010) Inorganics in Organics: Tracking down the Intrinsic Equilibriums between Organic Molecules and Trace Elements in Oceanic Waters , 2010 Fall Meeting, AGU, San Francisco, Calif.Dec. . hdl:10013/epic.36597 EPIC32010 Fall Meeting, AGU, San Francisco, Calif.Dec., 13 Conference notRev 2010 ftawi 2021-12-24T15:34:44Z Recent developments in analytical instrumentation enable to describe biogeochemical processes in oceanic waters on a molecular level. This is the prerequisite to integrate biological and geochemical parameters and to develop chemical cycles on a global perspective. The state-of-the-art Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) applications for dissolved organic matter (DOM) focus mainly on carbon, hydrogen, oxygen and nitrogen isotopes. Implementation of sulfur and especially phosphorus in the molecular formula assignment has been questionable because of ambiguous calculated elemental formulas. On the other hand, many compounds bearing these elements are well known to occur in the dissolved state as part of the permanent recycling processes (e.g. phospholipids, phosphonates) but analytics of dissolved organic phosphorus (DOP) and sulfur (DOS) are often hampered by the large inorganic P and S pools. Even less is known about complexation characteristics of the DOM moieties. Although electrochemical methods provide some information about trace metal speciation, the high amount of organic molecules and its insufficient description as chemical functional classes prevent the assignment of trace metals to ligand classes. Nevertheless, it is undoubtful that a varying but extensive amount of transition metals is bond in form of organic complexes.Hyphenation of reversed phase high performance liquid chromatography (RP-HPLC) with high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) is a valuable tool to study these metal-organic interactions in a qualitative and quantitative approach. We established a desolvation method that allows direct transfer of high organic solvent loads into the plasma. Thus, in combination with internal standardization and external calibration, the investigation of a broad polarity scale was possible. This approach overcomes previous restrictions to non-organic solvent separation techniques like size exclusion chromatography (SEC). We used solid phase extracted DOM (SPE-DOM) from Atlantic and Southern Ocean water samples to show that organic sulfur and phosphorus species can be separated via RP-HPLC and that the partitioning can be correlated to trace metal binding capabilities in the different fractions. A molecular level investigation of these fractions via FT-ICR-MS revealed further details of the complexation features and connects the polarity-based separation on a C18 column to O/C and H/C elemental ratios. With our study, we showed that biologically relevant transition metals (e.g. Fe, Ni, Cu) and uranium are intrinsic constituents of the DOM fractions. Moreover, a comparison between samples from different ecological provinces and diagenetic conditions was performed to highlight the benefits of this approach for future marine biogeochemical research. Conference Object Southern Ocean Alfred Wegener Institute for Polar- and Marine Research (AWI): ePIC (electronic Publication Information Center) Southern Ocean
institution Open Polar
collection Alfred Wegener Institute for Polar- and Marine Research (AWI): ePIC (electronic Publication Information Center)
op_collection_id ftawi
language unknown
description Recent developments in analytical instrumentation enable to describe biogeochemical processes in oceanic waters on a molecular level. This is the prerequisite to integrate biological and geochemical parameters and to develop chemical cycles on a global perspective. The state-of-the-art Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) applications for dissolved organic matter (DOM) focus mainly on carbon, hydrogen, oxygen and nitrogen isotopes. Implementation of sulfur and especially phosphorus in the molecular formula assignment has been questionable because of ambiguous calculated elemental formulas. On the other hand, many compounds bearing these elements are well known to occur in the dissolved state as part of the permanent recycling processes (e.g. phospholipids, phosphonates) but analytics of dissolved organic phosphorus (DOP) and sulfur (DOS) are often hampered by the large inorganic P and S pools. Even less is known about complexation characteristics of the DOM moieties. Although electrochemical methods provide some information about trace metal speciation, the high amount of organic molecules and its insufficient description as chemical functional classes prevent the assignment of trace metals to ligand classes. Nevertheless, it is undoubtful that a varying but extensive amount of transition metals is bond in form of organic complexes.Hyphenation of reversed phase high performance liquid chromatography (RP-HPLC) with high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) is a valuable tool to study these metal-organic interactions in a qualitative and quantitative approach. We established a desolvation method that allows direct transfer of high organic solvent loads into the plasma. Thus, in combination with internal standardization and external calibration, the investigation of a broad polarity scale was possible. This approach overcomes previous restrictions to non-organic solvent separation techniques like size exclusion chromatography (SEC). We used solid phase extracted DOM (SPE-DOM) from Atlantic and Southern Ocean water samples to show that organic sulfur and phosphorus species can be separated via RP-HPLC and that the partitioning can be correlated to trace metal binding capabilities in the different fractions. A molecular level investigation of these fractions via FT-ICR-MS revealed further details of the complexation features and connects the polarity-based separation on a C18 column to O/C and H/C elemental ratios. With our study, we showed that biologically relevant transition metals (e.g. Fe, Ni, Cu) and uranium are intrinsic constituents of the DOM fractions. Moreover, a comparison between samples from different ecological provinces and diagenetic conditions was performed to highlight the benefits of this approach for future marine biogeochemical research.
format Conference Object
author Lechtenfeld, Oliver
Koch, Boris
Witt, M.
Kattner, Gerhard
spellingShingle Lechtenfeld, Oliver
Koch, Boris
Witt, M.
Kattner, Gerhard
Inorganics in Organics: Tracking down the Intrinsic Equilibriums between Organic Molecules and Trace Elements in Oceanic Waters
author_facet Lechtenfeld, Oliver
Koch, Boris
Witt, M.
Kattner, Gerhard
author_sort Lechtenfeld, Oliver
title Inorganics in Organics: Tracking down the Intrinsic Equilibriums between Organic Molecules and Trace Elements in Oceanic Waters
title_short Inorganics in Organics: Tracking down the Intrinsic Equilibriums between Organic Molecules and Trace Elements in Oceanic Waters
title_full Inorganics in Organics: Tracking down the Intrinsic Equilibriums between Organic Molecules and Trace Elements in Oceanic Waters
title_fullStr Inorganics in Organics: Tracking down the Intrinsic Equilibriums between Organic Molecules and Trace Elements in Oceanic Waters
title_full_unstemmed Inorganics in Organics: Tracking down the Intrinsic Equilibriums between Organic Molecules and Trace Elements in Oceanic Waters
title_sort inorganics in organics: tracking down the intrinsic equilibriums between organic molecules and trace elements in oceanic waters
publishDate 2010
url https://epic.awi.de/id/eprint/23685/
https://hdl.handle.net/10013/epic.36597
geographic Southern Ocean
geographic_facet Southern Ocean
genre Southern Ocean
genre_facet Southern Ocean
op_source EPIC32010 Fall Meeting, AGU, San Francisco, Calif.Dec., 13
op_relation Lechtenfeld, O. , Koch, B. orcid:0000-0002-8453-731X , Witt, M. and Kattner, G. (2010) Inorganics in Organics: Tracking down the Intrinsic Equilibriums between Organic Molecules and Trace Elements in Oceanic Waters , 2010 Fall Meeting, AGU, San Francisco, Calif.Dec. . hdl:10013/epic.36597
_version_ 1766207841472872448