The Atlantic Ocean at the last glacial maximum: 2. Reconstructing the current systems with a global ocean model

We use a global ocean general circulation model (OGCM) with low vertical diffusion and isopycnal mixing to simulate the circulation in the Atlantic Ocean at present-day and the Last Glacial Maximum (LGM). The OGCM includes d18O as a passive tracer. Regarding the LGM sea-surface boundary conditions,...

Full description

Bibliographic Details
Main Authors: Paul, A., Schäfer-Neth, Christian
Format: Book Part
Language:unknown
Published: 2003
Subjects:
Online Access:https://epic.awi.de/id/eprint/12172/
https://epic.awi.de/id/eprint/12172/1/Pau2003a.pdf
https://hdl.handle.net/10013/epic.22605
https://hdl.handle.net/10013/epic.22605.d001
id ftawi:oai:epic.awi.de:12172
record_format openpolar
spelling ftawi:oai:epic.awi.de:12172 2023-09-05T13:15:19+02:00 The Atlantic Ocean at the last glacial maximum: 2. Reconstructing the current systems with a global ocean model Paul, A. Schäfer-Neth, Christian 2003 application/pdf https://epic.awi.de/id/eprint/12172/ https://epic.awi.de/id/eprint/12172/1/Pau2003a.pdf https://hdl.handle.net/10013/epic.22605 https://hdl.handle.net/10013/epic.22605.d001 unknown https://epic.awi.de/id/eprint/12172/1/Pau2003a.pdf https://hdl.handle.net/10013/epic.22605.d001 Paul, A. and Schäfer-Neth, C. orcid:0000-0002-6995-8706 (2003) The Atlantic Ocean at the last glacial maximum: 2. Reconstructing the current systems with a global ocean model , In: Wefer G., Mulitza S., and Ratmeyer V. (eds) The South Atlantic in the Late Quaternary: Material Budget and Current Systems, Springer, Berlin . hdl:10013/epic.22605 EPIC3In: Wefer G., Mulitza S., and Ratmeyer V. (eds) The South Atlantic in the Late Quaternary: Material Budget and Current Systems, Springer, Berlin, pp. 549-583 Inbook peerRev 2003 ftawi 2023-08-22T19:49:48Z We use a global ocean general circulation model (OGCM) with low vertical diffusion and isopycnal mixing to simulate the circulation in the Atlantic Ocean at present-day and the Last Glacial Maximum (LGM). The OGCM includes d18O as a passive tracer. Regarding the LGM sea-surface boundary conditions, the temperature is based on the GLAMAP reconstruction, the salinity is estimated from the available d18O data, and the wind-stress is derived from the output of an atmospheric general circulation model. Our focus is on changes in the upper-ocean hydrology, the large-scale horizontal circulation and the d18O distribution. In a series of LGM experiments with a step-wise increase of the sea-surface salinity anomaly in the Weddell Sea, the ventilated thermocline was colder than today by 2 3°C in the North Atlantic Ocean and, in the experiment with the largest anomaly (1.0 beyond the global anomaly), by 4-5°C in the South Atlantic Ocean; furthermore it was generally shallower. As the meridional density gradient grew, the Antarctic Circumpolar Current strengthened and its northern boundary approached Cape of Good Hope. At the same time the southward penetration of the Agulhas Current was reduced, and less thermocline-to-intermediate water slipped from the Indian Ocean along the southern rim of the African continent into the South Atlantic Ocean; the 'Agulhas leakage' was diminished by up to 60% with respect to its modern value, such that the cold water route became the dominant path for North Atlantic Deep Water (NADW) renewal. It can be speculated that the simulated intensification of the Benguela Current and the enhancement of NADW upwelling in the Southern Ocean might reduce the import of silicate into the Benguela System, which could possibly resolve the 'Walvis Opal Paradox'. Although d18Ow was restored to the same surface values and could only reflect changes in advection and diffusion, the resulting d18Oc distribution came close to reconstructions based on fossil shells of benthic foraminifera. Book Part Antarc* Antarctic NADW North Atlantic Deep Water North Atlantic South Atlantic Ocean Southern Ocean Weddell Sea Alfred Wegener Institute for Polar- and Marine Research (AWI): ePIC (electronic Publication Information Center) Antarctic Indian Southern Ocean The Antarctic Weddell Weddell Sea
institution Open Polar
collection Alfred Wegener Institute for Polar- and Marine Research (AWI): ePIC (electronic Publication Information Center)
op_collection_id ftawi
language unknown
description We use a global ocean general circulation model (OGCM) with low vertical diffusion and isopycnal mixing to simulate the circulation in the Atlantic Ocean at present-day and the Last Glacial Maximum (LGM). The OGCM includes d18O as a passive tracer. Regarding the LGM sea-surface boundary conditions, the temperature is based on the GLAMAP reconstruction, the salinity is estimated from the available d18O data, and the wind-stress is derived from the output of an atmospheric general circulation model. Our focus is on changes in the upper-ocean hydrology, the large-scale horizontal circulation and the d18O distribution. In a series of LGM experiments with a step-wise increase of the sea-surface salinity anomaly in the Weddell Sea, the ventilated thermocline was colder than today by 2 3°C in the North Atlantic Ocean and, in the experiment with the largest anomaly (1.0 beyond the global anomaly), by 4-5°C in the South Atlantic Ocean; furthermore it was generally shallower. As the meridional density gradient grew, the Antarctic Circumpolar Current strengthened and its northern boundary approached Cape of Good Hope. At the same time the southward penetration of the Agulhas Current was reduced, and less thermocline-to-intermediate water slipped from the Indian Ocean along the southern rim of the African continent into the South Atlantic Ocean; the 'Agulhas leakage' was diminished by up to 60% with respect to its modern value, such that the cold water route became the dominant path for North Atlantic Deep Water (NADW) renewal. It can be speculated that the simulated intensification of the Benguela Current and the enhancement of NADW upwelling in the Southern Ocean might reduce the import of silicate into the Benguela System, which could possibly resolve the 'Walvis Opal Paradox'. Although d18Ow was restored to the same surface values and could only reflect changes in advection and diffusion, the resulting d18Oc distribution came close to reconstructions based on fossil shells of benthic foraminifera.
format Book Part
author Paul, A.
Schäfer-Neth, Christian
spellingShingle Paul, A.
Schäfer-Neth, Christian
The Atlantic Ocean at the last glacial maximum: 2. Reconstructing the current systems with a global ocean model
author_facet Paul, A.
Schäfer-Neth, Christian
author_sort Paul, A.
title The Atlantic Ocean at the last glacial maximum: 2. Reconstructing the current systems with a global ocean model
title_short The Atlantic Ocean at the last glacial maximum: 2. Reconstructing the current systems with a global ocean model
title_full The Atlantic Ocean at the last glacial maximum: 2. Reconstructing the current systems with a global ocean model
title_fullStr The Atlantic Ocean at the last glacial maximum: 2. Reconstructing the current systems with a global ocean model
title_full_unstemmed The Atlantic Ocean at the last glacial maximum: 2. Reconstructing the current systems with a global ocean model
title_sort atlantic ocean at the last glacial maximum: 2. reconstructing the current systems with a global ocean model
publishDate 2003
url https://epic.awi.de/id/eprint/12172/
https://epic.awi.de/id/eprint/12172/1/Pau2003a.pdf
https://hdl.handle.net/10013/epic.22605
https://hdl.handle.net/10013/epic.22605.d001
geographic Antarctic
Indian
Southern Ocean
The Antarctic
Weddell
Weddell Sea
geographic_facet Antarctic
Indian
Southern Ocean
The Antarctic
Weddell
Weddell Sea
genre Antarc*
Antarctic
NADW
North Atlantic Deep Water
North Atlantic
South Atlantic Ocean
Southern Ocean
Weddell Sea
genre_facet Antarc*
Antarctic
NADW
North Atlantic Deep Water
North Atlantic
South Atlantic Ocean
Southern Ocean
Weddell Sea
op_source EPIC3In: Wefer G., Mulitza S., and Ratmeyer V. (eds) The South Atlantic in the Late Quaternary: Material Budget and Current Systems, Springer, Berlin, pp. 549-583
op_relation https://epic.awi.de/id/eprint/12172/1/Pau2003a.pdf
https://hdl.handle.net/10013/epic.22605.d001
Paul, A. and Schäfer-Neth, C. orcid:0000-0002-6995-8706 (2003) The Atlantic Ocean at the last glacial maximum: 2. Reconstructing the current systems with a global ocean model , In: Wefer G., Mulitza S., and Ratmeyer V. (eds) The South Atlantic in the Late Quaternary: Material Budget and Current Systems, Springer, Berlin . hdl:10013/epic.22605
_version_ 1776197119129944064