Rapid evolution fuels transcriptional plasticity to ocean acidification

Ocean acidification (OA) is postulated to affect the physiology, behavior, and life-history of marine species, but potential for acclimation or adaptation to elevated pCO2 in wild populations remains largely untested. We measured brain transcriptomes of six coral reef fish species at a natural volca...

Full description

Bibliographic Details
Published in:Global Change Biology
Main Authors: Kang, Jingliang, Nagelkerken, Ivan, Rummer, Jodie L., Rodolfo‐metalpa, Riccardo, Munday, Philip L., Ravasi, Timothy, Schunter, Celia
Format: Article in Journal/Newspaper
Language:English
Published: Wiley 2022
Subjects:
Online Access:https://archimer.ifremer.fr/doc/00753/86520/91907.pdf
https://archimer.ifremer.fr/doc/00753/86520/91908.docx
https://archimer.ifremer.fr/doc/00753/86520/91909.xlsx
https://doi.org/10.1111/gcb.16119
https://archimer.ifremer.fr/doc/00753/86520/
id ftarchimer:oai:archimer.ifremer.fr:86520
record_format openpolar
spelling ftarchimer:oai:archimer.ifremer.fr:86520 2023-05-15T17:50:16+02:00 Rapid evolution fuels transcriptional plasticity to ocean acidification Kang, Jingliang Nagelkerken, Ivan Rummer, Jodie L. Rodolfo‐metalpa, Riccardo Munday, Philip L. Ravasi, Timothy Schunter, Celia 2022-05 application/pdf https://archimer.ifremer.fr/doc/00753/86520/91907.pdf https://archimer.ifremer.fr/doc/00753/86520/91908.docx https://archimer.ifremer.fr/doc/00753/86520/91909.xlsx https://doi.org/10.1111/gcb.16119 https://archimer.ifremer.fr/doc/00753/86520/ eng eng Wiley https://archimer.ifremer.fr/doc/00753/86520/91907.pdf https://archimer.ifremer.fr/doc/00753/86520/91908.docx https://archimer.ifremer.fr/doc/00753/86520/91909.xlsx doi:10.1111/gcb.16119 https://archimer.ifremer.fr/doc/00753/86520/ info:eu-repo/semantics/openAccess restricted use Global Change Biology (1354-1013) (Wiley), 2022-05 , Vol. 28 , N. 9 , P. 3007-3022 circadian rhythm climate change elevated pCO(2) intracellular pH neuromolecular response transcriptome text Publication info:eu-repo/semantics/article 2022 ftarchimer https://doi.org/10.1111/gcb.16119 2022-12-20T23:50:40Z Ocean acidification (OA) is postulated to affect the physiology, behavior, and life-history of marine species, but potential for acclimation or adaptation to elevated pCO2 in wild populations remains largely untested. We measured brain transcriptomes of six coral reef fish species at a natural volcanic CO2 seep and an adjacent control reef in Papua New Guinea. We show that elevated pCO2 induced common molecular responses related to circadian rhythm and immune system but different magnitudes of molecular response across the six species. Notably, elevated transcriptional plasticity was associated with core circadian genes affecting the regulation of intracellular pH and neural activity in Acanthochromis polyacanthus. Gene expression patterns were reversible in this species as evidenced upon reduction of CO2 following a natural storm-event. Compared with other species, Ac. polyacanthus has a more rapid evolutionary rate and more positively selected genes in key functions under the influence of elevated CO2, thus fueling increased transcriptional plasticity. Our study reveals the basis to variable gene expression changes across species, with some species possessing evolved molecular toolkits to cope with future OA. Article in Journal/Newspaper Ocean acidification Archimer (Archive Institutionnelle de l'Ifremer - Institut français de recherche pour l'exploitation de la mer) Global Change Biology
institution Open Polar
collection Archimer (Archive Institutionnelle de l'Ifremer - Institut français de recherche pour l'exploitation de la mer)
op_collection_id ftarchimer
language English
topic circadian rhythm
climate change
elevated pCO(2)
intracellular pH
neuromolecular response
transcriptome
spellingShingle circadian rhythm
climate change
elevated pCO(2)
intracellular pH
neuromolecular response
transcriptome
Kang, Jingliang
Nagelkerken, Ivan
Rummer, Jodie L.
Rodolfo‐metalpa, Riccardo
Munday, Philip L.
Ravasi, Timothy
Schunter, Celia
Rapid evolution fuels transcriptional plasticity to ocean acidification
topic_facet circadian rhythm
climate change
elevated pCO(2)
intracellular pH
neuromolecular response
transcriptome
description Ocean acidification (OA) is postulated to affect the physiology, behavior, and life-history of marine species, but potential for acclimation or adaptation to elevated pCO2 in wild populations remains largely untested. We measured brain transcriptomes of six coral reef fish species at a natural volcanic CO2 seep and an adjacent control reef in Papua New Guinea. We show that elevated pCO2 induced common molecular responses related to circadian rhythm and immune system but different magnitudes of molecular response across the six species. Notably, elevated transcriptional plasticity was associated with core circadian genes affecting the regulation of intracellular pH and neural activity in Acanthochromis polyacanthus. Gene expression patterns were reversible in this species as evidenced upon reduction of CO2 following a natural storm-event. Compared with other species, Ac. polyacanthus has a more rapid evolutionary rate and more positively selected genes in key functions under the influence of elevated CO2, thus fueling increased transcriptional plasticity. Our study reveals the basis to variable gene expression changes across species, with some species possessing evolved molecular toolkits to cope with future OA.
format Article in Journal/Newspaper
author Kang, Jingliang
Nagelkerken, Ivan
Rummer, Jodie L.
Rodolfo‐metalpa, Riccardo
Munday, Philip L.
Ravasi, Timothy
Schunter, Celia
author_facet Kang, Jingliang
Nagelkerken, Ivan
Rummer, Jodie L.
Rodolfo‐metalpa, Riccardo
Munday, Philip L.
Ravasi, Timothy
Schunter, Celia
author_sort Kang, Jingliang
title Rapid evolution fuels transcriptional plasticity to ocean acidification
title_short Rapid evolution fuels transcriptional plasticity to ocean acidification
title_full Rapid evolution fuels transcriptional plasticity to ocean acidification
title_fullStr Rapid evolution fuels transcriptional plasticity to ocean acidification
title_full_unstemmed Rapid evolution fuels transcriptional plasticity to ocean acidification
title_sort rapid evolution fuels transcriptional plasticity to ocean acidification
publisher Wiley
publishDate 2022
url https://archimer.ifremer.fr/doc/00753/86520/91907.pdf
https://archimer.ifremer.fr/doc/00753/86520/91908.docx
https://archimer.ifremer.fr/doc/00753/86520/91909.xlsx
https://doi.org/10.1111/gcb.16119
https://archimer.ifremer.fr/doc/00753/86520/
genre Ocean acidification
genre_facet Ocean acidification
op_source Global Change Biology (1354-1013) (Wiley), 2022-05 , Vol. 28 , N. 9 , P. 3007-3022
op_relation https://archimer.ifremer.fr/doc/00753/86520/91907.pdf
https://archimer.ifremer.fr/doc/00753/86520/91908.docx
https://archimer.ifremer.fr/doc/00753/86520/91909.xlsx
doi:10.1111/gcb.16119
https://archimer.ifremer.fr/doc/00753/86520/
op_rights info:eu-repo/semantics/openAccess
restricted use
op_doi https://doi.org/10.1111/gcb.16119
container_title Global Change Biology
_version_ 1766156961654505472