Objective analysis of SMOS and SMAP Sea Surface Salinity to reduce large scale and time dependent biases from low to high latitudes
Ten years of L-Band radiometric measurements have proven the capability of satellite Sea Surface Salinity (SSS) to resolve large scale to mesoscale SSS features in tropical to subtropical ocean. In mid to high latitude, L-Band measurements still suffer from large scale and time systematic errors. He...
Published in: | Journal of Atmospheric and Oceanic Technology |
---|---|
Main Authors: | , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
American Meteorological Society
2021
|
Subjects: | |
Online Access: | https://archimer.ifremer.fr/doc/00665/77702/79785.pdf https://doi.org/10.1175/JTECH-D-20-0093.1 https://archimer.ifremer.fr/doc/00665/77702/ |
id |
ftarchimer:oai:archimer.ifremer.fr:77702 |
---|---|
record_format |
openpolar |
spelling |
ftarchimer:oai:archimer.ifremer.fr:77702 2023-05-15T15:12:37+02:00 Objective analysis of SMOS and SMAP Sea Surface Salinity to reduce large scale and time dependent biases from low to high latitudes Kolodziejczyk, Nicolas Hamon, Michel Boutin, Jacqueline Vergely, Jean-luc Reverdin, Gilles Supply, Alexandre Reul, Nicolas 2021-03 application/pdf https://archimer.ifremer.fr/doc/00665/77702/79785.pdf https://doi.org/10.1175/JTECH-D-20-0093.1 https://archimer.ifremer.fr/doc/00665/77702/ eng eng American Meteorological Society https://archimer.ifremer.fr/doc/00665/77702/79785.pdf doi:10.1175/JTECH-D-20-0093.1 https://archimer.ifremer.fr/doc/00665/77702/ info:eu-repo/semantics/openAccess restricted use Journal Of Atmospheric And Oceanic Technology (0739-0572) (American Meteorological Society), 2021-03 , Vol. 38 , N. 3 , P. 405-421 Ocean Salinity In situ oceanic observations Satellite observations Surface observations Interpolation schemes text Publication info:eu-repo/semantics/article 2021 ftarchimer https://doi.org/10.1175/JTECH-D-20-0093.1 2021-09-23T20:36:34Z Ten years of L-Band radiometric measurements have proven the capability of satellite Sea Surface Salinity (SSS) to resolve large scale to mesoscale SSS features in tropical to subtropical ocean. In mid to high latitude, L-Band measurements still suffer from large scale and time systematic errors. Here, a simple method is proposed to mitigate the large scale and seasonal varying biases. First, an Optimal Interpolation (OI) using a large correlation scale (~500 km) is used to map independently Soil Moisture and Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP) Level 3 data. The mapping is compared to the equivalent mapping of in situ observations to estimate the large scale and seasonal biases. A second mapping is performed on adjusted SSS at the scale of SMOS/SMAP spatial resolution (~45 km). This procedure merges both products, and increases the signal to noise ratio of the absolute SSS estimates, reducing the RMSD of in situ-satellite products by about 26-32% from mid to high latitude, respectively, in comparison to the existing SMOS and SMAP L3 products. However, in the Arctic Ocean, some issues on satellite retrieved SSS related to e.g. radio frequency interferences, land-sea contamination, ice-sea contamination remain challenging to reduce given the low sensitivity of L-Band radiometric measurements to SSS in cold water. Using the thermodynamic equation of state (TEOS-10), the resulting L4 SSS satellite product is combined with satellite-microwave SST products to estimate sea surface density, spiciness, haline contraction and thermal expansion coefficients. For the first time, we illustrate how useful are these satellite derived parameters to fully characterize the surface ocean water masses at large mesoscale. Article in Journal/Newspaper Arctic Arctic Ocean Archimer (Archive Institutionnelle de l'Ifremer - Institut français de recherche pour l'exploitation de la mer) Arctic Arctic Ocean Journal of Atmospheric and Oceanic Technology 38 3 405 421 |
institution |
Open Polar |
collection |
Archimer (Archive Institutionnelle de l'Ifremer - Institut français de recherche pour l'exploitation de la mer) |
op_collection_id |
ftarchimer |
language |
English |
topic |
Ocean Salinity In situ oceanic observations Satellite observations Surface observations Interpolation schemes |
spellingShingle |
Ocean Salinity In situ oceanic observations Satellite observations Surface observations Interpolation schemes Kolodziejczyk, Nicolas Hamon, Michel Boutin, Jacqueline Vergely, Jean-luc Reverdin, Gilles Supply, Alexandre Reul, Nicolas Objective analysis of SMOS and SMAP Sea Surface Salinity to reduce large scale and time dependent biases from low to high latitudes |
topic_facet |
Ocean Salinity In situ oceanic observations Satellite observations Surface observations Interpolation schemes |
description |
Ten years of L-Band radiometric measurements have proven the capability of satellite Sea Surface Salinity (SSS) to resolve large scale to mesoscale SSS features in tropical to subtropical ocean. In mid to high latitude, L-Band measurements still suffer from large scale and time systematic errors. Here, a simple method is proposed to mitigate the large scale and seasonal varying biases. First, an Optimal Interpolation (OI) using a large correlation scale (~500 km) is used to map independently Soil Moisture and Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP) Level 3 data. The mapping is compared to the equivalent mapping of in situ observations to estimate the large scale and seasonal biases. A second mapping is performed on adjusted SSS at the scale of SMOS/SMAP spatial resolution (~45 km). This procedure merges both products, and increases the signal to noise ratio of the absolute SSS estimates, reducing the RMSD of in situ-satellite products by about 26-32% from mid to high latitude, respectively, in comparison to the existing SMOS and SMAP L3 products. However, in the Arctic Ocean, some issues on satellite retrieved SSS related to e.g. radio frequency interferences, land-sea contamination, ice-sea contamination remain challenging to reduce given the low sensitivity of L-Band radiometric measurements to SSS in cold water. Using the thermodynamic equation of state (TEOS-10), the resulting L4 SSS satellite product is combined with satellite-microwave SST products to estimate sea surface density, spiciness, haline contraction and thermal expansion coefficients. For the first time, we illustrate how useful are these satellite derived parameters to fully characterize the surface ocean water masses at large mesoscale. |
format |
Article in Journal/Newspaper |
author |
Kolodziejczyk, Nicolas Hamon, Michel Boutin, Jacqueline Vergely, Jean-luc Reverdin, Gilles Supply, Alexandre Reul, Nicolas |
author_facet |
Kolodziejczyk, Nicolas Hamon, Michel Boutin, Jacqueline Vergely, Jean-luc Reverdin, Gilles Supply, Alexandre Reul, Nicolas |
author_sort |
Kolodziejczyk, Nicolas |
title |
Objective analysis of SMOS and SMAP Sea Surface Salinity to reduce large scale and time dependent biases from low to high latitudes |
title_short |
Objective analysis of SMOS and SMAP Sea Surface Salinity to reduce large scale and time dependent biases from low to high latitudes |
title_full |
Objective analysis of SMOS and SMAP Sea Surface Salinity to reduce large scale and time dependent biases from low to high latitudes |
title_fullStr |
Objective analysis of SMOS and SMAP Sea Surface Salinity to reduce large scale and time dependent biases from low to high latitudes |
title_full_unstemmed |
Objective analysis of SMOS and SMAP Sea Surface Salinity to reduce large scale and time dependent biases from low to high latitudes |
title_sort |
objective analysis of smos and smap sea surface salinity to reduce large scale and time dependent biases from low to high latitudes |
publisher |
American Meteorological Society |
publishDate |
2021 |
url |
https://archimer.ifremer.fr/doc/00665/77702/79785.pdf https://doi.org/10.1175/JTECH-D-20-0093.1 https://archimer.ifremer.fr/doc/00665/77702/ |
geographic |
Arctic Arctic Ocean |
geographic_facet |
Arctic Arctic Ocean |
genre |
Arctic Arctic Ocean |
genre_facet |
Arctic Arctic Ocean |
op_source |
Journal Of Atmospheric And Oceanic Technology (0739-0572) (American Meteorological Society), 2021-03 , Vol. 38 , N. 3 , P. 405-421 |
op_relation |
https://archimer.ifremer.fr/doc/00665/77702/79785.pdf doi:10.1175/JTECH-D-20-0093.1 https://archimer.ifremer.fr/doc/00665/77702/ |
op_rights |
info:eu-repo/semantics/openAccess restricted use |
op_doi |
https://doi.org/10.1175/JTECH-D-20-0093.1 |
container_title |
Journal of Atmospheric and Oceanic Technology |
container_volume |
38 |
container_issue |
3 |
container_start_page |
405 |
op_container_end_page |
421 |
_version_ |
1766343273967779840 |