Methane Hydrate Formation and Dissociation in Sand Media: Effect of Water Saturation, Gas Flowrate and Particle Size

Assessing the influence of key parameters governing the formation of hydrates and determining the capacity of the latter to store gaseous molecules is needed to improve our understanding of the role of natural gas hydrates in the oceanic methane cycle. Such knowledge will also support the developmen...

Full description

Bibliographic Details
Published in:Energies
Main Authors: Benmesbah, Fatima, Ruffine, Livio, Clain, Pascal, Osswald, Véronique, Fandino Torres, Olivia, Fournaison, Laurence, Delahaye, Anthony
Format: Article in Journal/Newspaper
Language:English
Published: MDPI 2020
Subjects:
Online Access:https://archimer.ifremer.fr/doc/00654/76593/77741.pdf
https://archimer.ifremer.fr/doc/00654/76593/77742.pdf
https://doi.org/10.3390/en13195200
https://archimer.ifremer.fr/doc/00654/76593/
id ftarchimer:oai:archimer.ifremer.fr:76593
record_format openpolar
spelling ftarchimer:oai:archimer.ifremer.fr:76593 2023-05-15T17:12:00+02:00 Methane Hydrate Formation and Dissociation in Sand Media: Effect of Water Saturation, Gas Flowrate and Particle Size Benmesbah, Fatima Ruffine, Livio Clain, Pascal Osswald, Véronique Fandino Torres, Olivia Fournaison, Laurence Delahaye, Anthony 2020-10 application/pdf https://archimer.ifremer.fr/doc/00654/76593/77741.pdf https://archimer.ifremer.fr/doc/00654/76593/77742.pdf https://doi.org/10.3390/en13195200 https://archimer.ifremer.fr/doc/00654/76593/ eng eng MDPI https://archimer.ifremer.fr/doc/00654/76593/77741.pdf https://archimer.ifremer.fr/doc/00654/76593/77742.pdf doi:10.3390/en13195200 https://archimer.ifremer.fr/doc/00654/76593/ info:eu-repo/semantics/openAccess restricted use Energies (1996-1073) (MDPI), 2020-10 , Vol. 13 , N. 19 , P. 21p. gas hydrate porous media kinetics methane storage estimate water saturation gas flowrate particle size text Publication info:eu-repo/semantics/article 2020 ftarchimer https://doi.org/10.3390/en13195200 2021-09-23T20:36:09Z Assessing the influence of key parameters governing the formation of hydrates and determining the capacity of the latter to store gaseous molecules is needed to improve our understanding of the role of natural gas hydrates in the oceanic methane cycle. Such knowledge will also support the development of new industrial processes and technologies such as those related to thermal energy storage. In this study, high-pressure laboratory methane hydrate formation and dissociation experiments were carried out in a sandy matrix at a temperature around 276.65 K. Methane was continuously injected at constant flowrate to allow hydrate formation over the course of the injection step. The influence of water saturation, methane injection flowrate and particle size on hydrate formation kinetics and methane storage capacity were investigated. Six water saturations (10.8%, 21.6%, 33%, 43.9%, 55% and 66.3%), three gas flowrates (29, 58 and 78 mLn·min−1) and three classes of particle size (80–140, 315–450 and 80–450 µm) were tested, and the resulting data were tabulated. Overall, the measured induction time obtained at 53–57% water saturation has an average value of 58 ± 14 min minutes with clear discrepancies that express the stochastic nature of hydrate nucleation, and/or results from the heterogeneity in the porosity and permeability fields of the sandy core due to heterogeneous particles. Besides, the results emphasize a clear link between the gas injection flowrate and the induction time whatever the particle size and water saturation. An increase in the gas flowrate from 29 to 78 mLn·min−1 is accompanied by a decrease in the induction time up to ~100 min (i.e., ~77% decrease). However, such clear behaviour is less conspicuous when varying either the particle size or the water saturation. Likewise, the volume of hydrate-bound methane increases with increasing water saturation. This study showed that water is not totally converted into hydrates and most of the calculated conversion ratios are around 74–84%, with the lowest value of 49.5% conversion at 54% of water saturation and the highest values of 97.8% for the lowest water saturation (10.8%). Comparison with similar experiments in the literature is also carried out herein. Article in Journal/Newspaper Methane hydrate Archimer (Archive Institutionnelle de l'Ifremer - Institut français de recherche pour l'exploitation de la mer) Energies 13 19 5200
institution Open Polar
collection Archimer (Archive Institutionnelle de l'Ifremer - Institut français de recherche pour l'exploitation de la mer)
op_collection_id ftarchimer
language English
topic gas hydrate
porous media
kinetics
methane storage estimate
water saturation
gas flowrate
particle size
spellingShingle gas hydrate
porous media
kinetics
methane storage estimate
water saturation
gas flowrate
particle size
Benmesbah, Fatima
Ruffine, Livio
Clain, Pascal
Osswald, Véronique
Fandino Torres, Olivia
Fournaison, Laurence
Delahaye, Anthony
Methane Hydrate Formation and Dissociation in Sand Media: Effect of Water Saturation, Gas Flowrate and Particle Size
topic_facet gas hydrate
porous media
kinetics
methane storage estimate
water saturation
gas flowrate
particle size
description Assessing the influence of key parameters governing the formation of hydrates and determining the capacity of the latter to store gaseous molecules is needed to improve our understanding of the role of natural gas hydrates in the oceanic methane cycle. Such knowledge will also support the development of new industrial processes and technologies such as those related to thermal energy storage. In this study, high-pressure laboratory methane hydrate formation and dissociation experiments were carried out in a sandy matrix at a temperature around 276.65 K. Methane was continuously injected at constant flowrate to allow hydrate formation over the course of the injection step. The influence of water saturation, methane injection flowrate and particle size on hydrate formation kinetics and methane storage capacity were investigated. Six water saturations (10.8%, 21.6%, 33%, 43.9%, 55% and 66.3%), three gas flowrates (29, 58 and 78 mLn·min−1) and three classes of particle size (80–140, 315–450 and 80–450 µm) were tested, and the resulting data were tabulated. Overall, the measured induction time obtained at 53–57% water saturation has an average value of 58 ± 14 min minutes with clear discrepancies that express the stochastic nature of hydrate nucleation, and/or results from the heterogeneity in the porosity and permeability fields of the sandy core due to heterogeneous particles. Besides, the results emphasize a clear link between the gas injection flowrate and the induction time whatever the particle size and water saturation. An increase in the gas flowrate from 29 to 78 mLn·min−1 is accompanied by a decrease in the induction time up to ~100 min (i.e., ~77% decrease). However, such clear behaviour is less conspicuous when varying either the particle size or the water saturation. Likewise, the volume of hydrate-bound methane increases with increasing water saturation. This study showed that water is not totally converted into hydrates and most of the calculated conversion ratios are around 74–84%, with the lowest value of 49.5% conversion at 54% of water saturation and the highest values of 97.8% for the lowest water saturation (10.8%). Comparison with similar experiments in the literature is also carried out herein.
format Article in Journal/Newspaper
author Benmesbah, Fatima
Ruffine, Livio
Clain, Pascal
Osswald, Véronique
Fandino Torres, Olivia
Fournaison, Laurence
Delahaye, Anthony
author_facet Benmesbah, Fatima
Ruffine, Livio
Clain, Pascal
Osswald, Véronique
Fandino Torres, Olivia
Fournaison, Laurence
Delahaye, Anthony
author_sort Benmesbah, Fatima
title Methane Hydrate Formation and Dissociation in Sand Media: Effect of Water Saturation, Gas Flowrate and Particle Size
title_short Methane Hydrate Formation and Dissociation in Sand Media: Effect of Water Saturation, Gas Flowrate and Particle Size
title_full Methane Hydrate Formation and Dissociation in Sand Media: Effect of Water Saturation, Gas Flowrate and Particle Size
title_fullStr Methane Hydrate Formation and Dissociation in Sand Media: Effect of Water Saturation, Gas Flowrate and Particle Size
title_full_unstemmed Methane Hydrate Formation and Dissociation in Sand Media: Effect of Water Saturation, Gas Flowrate and Particle Size
title_sort methane hydrate formation and dissociation in sand media: effect of water saturation, gas flowrate and particle size
publisher MDPI
publishDate 2020
url https://archimer.ifremer.fr/doc/00654/76593/77741.pdf
https://archimer.ifremer.fr/doc/00654/76593/77742.pdf
https://doi.org/10.3390/en13195200
https://archimer.ifremer.fr/doc/00654/76593/
genre Methane hydrate
genre_facet Methane hydrate
op_source Energies (1996-1073) (MDPI), 2020-10 , Vol. 13 , N. 19 , P. 21p.
op_relation https://archimer.ifremer.fr/doc/00654/76593/77741.pdf
https://archimer.ifremer.fr/doc/00654/76593/77742.pdf
doi:10.3390/en13195200
https://archimer.ifremer.fr/doc/00654/76593/
op_rights info:eu-repo/semantics/openAccess
restricted use
op_doi https://doi.org/10.3390/en13195200
container_title Energies
container_volume 13
container_issue 19
container_start_page 5200
_version_ 1766068758360621056