Why Does the Deep Western Boundary Current “Leak” around Flemish Cap?
The southward flowing deep limb of the Atlantic Meridional Overturning Circulation is comprised of both the Deep Western Boundary Current (DWBC) and interior pathways. The latter are fed by “leakiness” from the DWBC in the Newfoundland Basin. However, the cause of this leakiness has not yet been exp...
Published in: | Journal of Physical Oceanography |
---|---|
Main Authors: | , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
American Meteorological Society
2020
|
Subjects: | |
Online Access: | https://archimer.ifremer.fr/doc/00630/74184/73787.pdf https://doi.org/10.1175/JPO-D-19-0247.1 https://archimer.ifremer.fr/doc/00630/74184/ |
id |
ftarchimer:oai:archimer.ifremer.fr:74184 |
---|---|
record_format |
openpolar |
spelling |
ftarchimer:oai:archimer.ifremer.fr:74184 2023-05-15T17:21:50+02:00 Why Does the Deep Western Boundary Current “Leak” around Flemish Cap? Solodoch, Aviv Mcwilliams, James C. Stewart, Andrew L. Gula, Jonathan Renault, Lionel 2020-07 application/pdf https://archimer.ifremer.fr/doc/00630/74184/73787.pdf https://doi.org/10.1175/JPO-D-19-0247.1 https://archimer.ifremer.fr/doc/00630/74184/ eng eng American Meteorological Society https://archimer.ifremer.fr/doc/00630/74184/73787.pdf doi:10.1175/JPO-D-19-0247.1 https://archimer.ifremer.fr/doc/00630/74184/ info:eu-repo/semantics/openAccess restricted use Journal Of Physical Oceanography (0022-3670) (American Meteorological Society), 2020-07 , Vol. 50 , N. 7 , P. 1989-2016 text Publication info:eu-repo/semantics/article 2020 ftarchimer https://doi.org/10.1175/JPO-D-19-0247.1 2021-09-23T20:35:08Z The southward flowing deep limb of the Atlantic Meridional Overturning Circulation is comprised of both the Deep Western Boundary Current (DWBC) and interior pathways. The latter are fed by “leakiness” from the DWBC in the Newfoundland Basin. However, the cause of this leakiness has not yet been explored mechanistically. Here the statistics and dynamics of the DWBC leakiness in the Newfoundland Basin are explored using two float data sets and a high-resolution numerical model. The float leakiness around Flemish Cap is found to be concentrated in several areas (“hotspots”) that are collocated with bathymetric curvature and steepening. Numerical particle advection experiments reveal that the Lagrangian mean velocity is offshore at these hotspots, while Lagrangian variability is minimal locally. Furthermore, model Eulerian-mean streamlines separate from the DWBC to the interior at the leakiness hotspots. This suggests that the leakiness of Lagrangian particles is primarily accomplished by an Eulerian-mean flow across isobaths, though eddies serve to transfer around 50% of the Lagrangian particles to the leakiness hotspots via chaotic advection, and rectified eddy transport accounts for around 50% of the offshore flow along the Southern Face of Flemish Cap. Analysis of the model’s energy and potential vorticity budgets suggests that the flow is baroclinically unstable after separation, but that the resulting eddies induce modest modifications of the mean potential vorticity along streamlines. These results suggest that mean uncompensated leakiness occurs mostly through inertial separation, for which a scaling analysis is presented. Implications for leakiness of other major boundary current systems are discussed. Article in Journal/Newspaper Newfoundland Archimer (Archive Institutionnelle de l'Ifremer - Institut français de recherche pour l'exploitation de la mer) Journal of Physical Oceanography 50 7 1989 2016 |
institution |
Open Polar |
collection |
Archimer (Archive Institutionnelle de l'Ifremer - Institut français de recherche pour l'exploitation de la mer) |
op_collection_id |
ftarchimer |
language |
English |
description |
The southward flowing deep limb of the Atlantic Meridional Overturning Circulation is comprised of both the Deep Western Boundary Current (DWBC) and interior pathways. The latter are fed by “leakiness” from the DWBC in the Newfoundland Basin. However, the cause of this leakiness has not yet been explored mechanistically. Here the statistics and dynamics of the DWBC leakiness in the Newfoundland Basin are explored using two float data sets and a high-resolution numerical model. The float leakiness around Flemish Cap is found to be concentrated in several areas (“hotspots”) that are collocated with bathymetric curvature and steepening. Numerical particle advection experiments reveal that the Lagrangian mean velocity is offshore at these hotspots, while Lagrangian variability is minimal locally. Furthermore, model Eulerian-mean streamlines separate from the DWBC to the interior at the leakiness hotspots. This suggests that the leakiness of Lagrangian particles is primarily accomplished by an Eulerian-mean flow across isobaths, though eddies serve to transfer around 50% of the Lagrangian particles to the leakiness hotspots via chaotic advection, and rectified eddy transport accounts for around 50% of the offshore flow along the Southern Face of Flemish Cap. Analysis of the model’s energy and potential vorticity budgets suggests that the flow is baroclinically unstable after separation, but that the resulting eddies induce modest modifications of the mean potential vorticity along streamlines. These results suggest that mean uncompensated leakiness occurs mostly through inertial separation, for which a scaling analysis is presented. Implications for leakiness of other major boundary current systems are discussed. |
format |
Article in Journal/Newspaper |
author |
Solodoch, Aviv Mcwilliams, James C. Stewart, Andrew L. Gula, Jonathan Renault, Lionel |
spellingShingle |
Solodoch, Aviv Mcwilliams, James C. Stewart, Andrew L. Gula, Jonathan Renault, Lionel Why Does the Deep Western Boundary Current “Leak” around Flemish Cap? |
author_facet |
Solodoch, Aviv Mcwilliams, James C. Stewart, Andrew L. Gula, Jonathan Renault, Lionel |
author_sort |
Solodoch, Aviv |
title |
Why Does the Deep Western Boundary Current “Leak” around Flemish Cap? |
title_short |
Why Does the Deep Western Boundary Current “Leak” around Flemish Cap? |
title_full |
Why Does the Deep Western Boundary Current “Leak” around Flemish Cap? |
title_fullStr |
Why Does the Deep Western Boundary Current “Leak” around Flemish Cap? |
title_full_unstemmed |
Why Does the Deep Western Boundary Current “Leak” around Flemish Cap? |
title_sort |
why does the deep western boundary current “leak” around flemish cap? |
publisher |
American Meteorological Society |
publishDate |
2020 |
url |
https://archimer.ifremer.fr/doc/00630/74184/73787.pdf https://doi.org/10.1175/JPO-D-19-0247.1 https://archimer.ifremer.fr/doc/00630/74184/ |
genre |
Newfoundland |
genre_facet |
Newfoundland |
op_source |
Journal Of Physical Oceanography (0022-3670) (American Meteorological Society), 2020-07 , Vol. 50 , N. 7 , P. 1989-2016 |
op_relation |
https://archimer.ifremer.fr/doc/00630/74184/73787.pdf doi:10.1175/JPO-D-19-0247.1 https://archimer.ifremer.fr/doc/00630/74184/ |
op_rights |
info:eu-repo/semantics/openAccess restricted use |
op_doi |
https://doi.org/10.1175/JPO-D-19-0247.1 |
container_title |
Journal of Physical Oceanography |
container_volume |
50 |
container_issue |
7 |
container_start_page |
1989 |
op_container_end_page |
2016 |
_version_ |
1766107677847453696 |