Radiocarbon Evidence for the Contribution of the Southern Indian Ocean to the Evolution of Atmospheric CO 2 over the last 32,000 years

It is widely assumed that the ventilation of the Southern Ocean played a crucial role in driving glacial‐interglacial atmospheric CO2‐levels. So far however, ventilation records from the Indian sector of the Southern Ocean, are widely missing. Here we present reconstructions of water residence times...

Full description

Bibliographic Details
Published in:Paleoceanography and Paleoclimatology
Main Authors: Ronge, Thomas A., Prange, M., Mollenhauer, Gesine, Ellinghausen, Maret, Kuhn, G., Tiedemann, R.
Format: Article in Journal/Newspaper
Language:English
Published: American Geophysical Union (AGU) 2020
Subjects:
Online Access:https://archimer.ifremer.fr/doc/00611/72351/71258.pdf
https://archimer.ifremer.fr/doc/00611/72351/71259.jpg
https://archimer.ifremer.fr/doc/00611/72351/71261.jpg
https://archimer.ifremer.fr/doc/00611/72351/71262.jpg
https://archimer.ifremer.fr/doc/00611/72351/71263.jpg
https://archimer.ifremer.fr/doc/00611/72351/71264.jpg
https://archimer.ifremer.fr/doc/00611/72351/71265.jpg
https://archimer.ifremer.fr/doc/00611/72351/71266.pdf
https://doi.org/10.1029/2019PA003733
https://archimer.ifremer.fr/doc/00611/72351/
id ftarchimer:oai:archimer.ifremer.fr:72351
record_format openpolar
institution Open Polar
collection Archimer (Archive Institutionnelle de l'Ifremer - Institut français de recherche pour l'exploitation de la mer)
op_collection_id ftarchimer
language English
topic radiocarbon
ventilation
Southern Ocean
Younger Dryas
carbon cycle
Indian Ocean
spellingShingle radiocarbon
ventilation
Southern Ocean
Younger Dryas
carbon cycle
Indian Ocean
Ronge, Thomas A.
Prange, M.
Mollenhauer, Gesine
Ellinghausen, Maret
Kuhn, G.
Tiedemann, R.
Radiocarbon Evidence for the Contribution of the Southern Indian Ocean to the Evolution of Atmospheric CO 2 over the last 32,000 years
topic_facet radiocarbon
ventilation
Southern Ocean
Younger Dryas
carbon cycle
Indian Ocean
description It is widely assumed that the ventilation of the Southern Ocean played a crucial role in driving glacial‐interglacial atmospheric CO2‐levels. So far however, ventilation records from the Indian sector of the Southern Ocean, are widely missing. Here we present reconstructions of water residence times (depicted as ΔΔ14C and Δδ13C) for the last 32,000 years on sediment records from the Kerguelen Plateau and the Conrad Rise (~570‐2500 m water depth), along with simulated changes in ocean stratification from a transient climate model experiment. Our data indicate that Circumpolar Deep Waters in the Indian Ocean were part of the glacial carbon pool. At our sites, close to or bathed by upwelling deep‐waters, we find two pulses of decreasing ΔΔ14C and δ13C values (~21‐17ka; ~15‐12ka). Both transient pulses precede a similar pattern in downstream intermediate waters in the tropical Indian Ocean as well as rising atmospheric CO2 values. These findings suggest that 14C‐depleted, CO2‐rich Circumpolar Deep Water from the Indian Ocean contributed to the rise in atmospheric CO2 during HS1 and also the Younger Dryas, and that the southern Indian Ocean acted as a gateway for sequestered carbon to the atmosphere and tropical intermediate waters. Plain Language Summary By analyzing air bubbles trapped in glacial ice from Antarctica, we know the pattern of atmospheric CO2 for roughly the last 800,000 years. This record shows a distinctive pattern of warm interglacials with high values of atmospheric CO2 (~280 ppm) and cold glacials with CO2 as low as ~180 ppm. A leading hypothesis assumes that the CO2 that went “missing” from the atmosphere during the glacials was stored in the deep global ocean. Several studies suggest that during glacials, the main connection between the deep ocean and the surface/atmosphere – the Southern Ocean – was significantly interrupted or at least reduced. Until now, it was shown that the deglacial South Pacific, the Drake Passage, and the South Atlantic played a vital role in the release of the stored ...
format Article in Journal/Newspaper
author Ronge, Thomas A.
Prange, M.
Mollenhauer, Gesine
Ellinghausen, Maret
Kuhn, G.
Tiedemann, R.
author_facet Ronge, Thomas A.
Prange, M.
Mollenhauer, Gesine
Ellinghausen, Maret
Kuhn, G.
Tiedemann, R.
author_sort Ronge, Thomas A.
title Radiocarbon Evidence for the Contribution of the Southern Indian Ocean to the Evolution of Atmospheric CO 2 over the last 32,000 years
title_short Radiocarbon Evidence for the Contribution of the Southern Indian Ocean to the Evolution of Atmospheric CO 2 over the last 32,000 years
title_full Radiocarbon Evidence for the Contribution of the Southern Indian Ocean to the Evolution of Atmospheric CO 2 over the last 32,000 years
title_fullStr Radiocarbon Evidence for the Contribution of the Southern Indian Ocean to the Evolution of Atmospheric CO 2 over the last 32,000 years
title_full_unstemmed Radiocarbon Evidence for the Contribution of the Southern Indian Ocean to the Evolution of Atmospheric CO 2 over the last 32,000 years
title_sort radiocarbon evidence for the contribution of the southern indian ocean to the evolution of atmospheric co 2 over the last 32,000 years
publisher American Geophysical Union (AGU)
publishDate 2020
url https://archimer.ifremer.fr/doc/00611/72351/71258.pdf
https://archimer.ifremer.fr/doc/00611/72351/71259.jpg
https://archimer.ifremer.fr/doc/00611/72351/71261.jpg
https://archimer.ifremer.fr/doc/00611/72351/71262.jpg
https://archimer.ifremer.fr/doc/00611/72351/71263.jpg
https://archimer.ifremer.fr/doc/00611/72351/71264.jpg
https://archimer.ifremer.fr/doc/00611/72351/71265.jpg
https://archimer.ifremer.fr/doc/00611/72351/71266.pdf
https://doi.org/10.1029/2019PA003733
https://archimer.ifremer.fr/doc/00611/72351/
long_lat ENVELOPE(41.000,41.000,-53.000,-53.000)
geographic Southern Ocean
Kerguelen
Drake Passage
Pacific
Indian
Conrad Rise
geographic_facet Southern Ocean
Kerguelen
Drake Passage
Pacific
Indian
Conrad Rise
genre Antarc*
Antarctica
Drake Passage
Southern Ocean
genre_facet Antarc*
Antarctica
Drake Passage
Southern Ocean
op_source Paleoceanography And Paleoclimatology (2572-4517) (American Geophysical Union (AGU)), 2020-03 , Vol. 35 , N. 3 , P. e2019PA003733 (16p.)
op_relation https://archimer.ifremer.fr/doc/00611/72351/71258.pdf
https://archimer.ifremer.fr/doc/00611/72351/71259.jpg
https://archimer.ifremer.fr/doc/00611/72351/71261.jpg
https://archimer.ifremer.fr/doc/00611/72351/71262.jpg
https://archimer.ifremer.fr/doc/00611/72351/71263.jpg
https://archimer.ifremer.fr/doc/00611/72351/71264.jpg
https://archimer.ifremer.fr/doc/00611/72351/71265.jpg
https://archimer.ifremer.fr/doc/00611/72351/71266.pdf
doi:10.1029/2019PA003733
https://archimer.ifremer.fr/doc/00611/72351/
op_rights info:eu-repo/semantics/openAccess
restricted use
op_doi https://doi.org/10.1029/2019PA003733
container_title Paleoceanography and Paleoclimatology
container_volume 35
container_issue 3
_version_ 1788057231394078720
spelling ftarchimer:oai:archimer.ifremer.fr:72351 2024-01-14T10:02:18+01:00 Radiocarbon Evidence for the Contribution of the Southern Indian Ocean to the Evolution of Atmospheric CO 2 over the last 32,000 years Ronge, Thomas A. Prange, M. Mollenhauer, Gesine Ellinghausen, Maret Kuhn, G. Tiedemann, R. 2020-03 application/pdf https://archimer.ifremer.fr/doc/00611/72351/71258.pdf https://archimer.ifremer.fr/doc/00611/72351/71259.jpg https://archimer.ifremer.fr/doc/00611/72351/71261.jpg https://archimer.ifremer.fr/doc/00611/72351/71262.jpg https://archimer.ifremer.fr/doc/00611/72351/71263.jpg https://archimer.ifremer.fr/doc/00611/72351/71264.jpg https://archimer.ifremer.fr/doc/00611/72351/71265.jpg https://archimer.ifremer.fr/doc/00611/72351/71266.pdf https://doi.org/10.1029/2019PA003733 https://archimer.ifremer.fr/doc/00611/72351/ eng eng American Geophysical Union (AGU) https://archimer.ifremer.fr/doc/00611/72351/71258.pdf https://archimer.ifremer.fr/doc/00611/72351/71259.jpg https://archimer.ifremer.fr/doc/00611/72351/71261.jpg https://archimer.ifremer.fr/doc/00611/72351/71262.jpg https://archimer.ifremer.fr/doc/00611/72351/71263.jpg https://archimer.ifremer.fr/doc/00611/72351/71264.jpg https://archimer.ifremer.fr/doc/00611/72351/71265.jpg https://archimer.ifremer.fr/doc/00611/72351/71266.pdf doi:10.1029/2019PA003733 https://archimer.ifremer.fr/doc/00611/72351/ info:eu-repo/semantics/openAccess restricted use Paleoceanography And Paleoclimatology (2572-4517) (American Geophysical Union (AGU)), 2020-03 , Vol. 35 , N. 3 , P. e2019PA003733 (16p.) radiocarbon ventilation Southern Ocean Younger Dryas carbon cycle Indian Ocean text Article info:eu-repo/semantics/article 2020 ftarchimer https://doi.org/10.1029/2019PA003733 2023-12-19T23:51:09Z It is widely assumed that the ventilation of the Southern Ocean played a crucial role in driving glacial‐interglacial atmospheric CO2‐levels. So far however, ventilation records from the Indian sector of the Southern Ocean, are widely missing. Here we present reconstructions of water residence times (depicted as ΔΔ14C and Δδ13C) for the last 32,000 years on sediment records from the Kerguelen Plateau and the Conrad Rise (~570‐2500 m water depth), along with simulated changes in ocean stratification from a transient climate model experiment. Our data indicate that Circumpolar Deep Waters in the Indian Ocean were part of the glacial carbon pool. At our sites, close to or bathed by upwelling deep‐waters, we find two pulses of decreasing ΔΔ14C and δ13C values (~21‐17ka; ~15‐12ka). Both transient pulses precede a similar pattern in downstream intermediate waters in the tropical Indian Ocean as well as rising atmospheric CO2 values. These findings suggest that 14C‐depleted, CO2‐rich Circumpolar Deep Water from the Indian Ocean contributed to the rise in atmospheric CO2 during HS1 and also the Younger Dryas, and that the southern Indian Ocean acted as a gateway for sequestered carbon to the atmosphere and tropical intermediate waters. Plain Language Summary By analyzing air bubbles trapped in glacial ice from Antarctica, we know the pattern of atmospheric CO2 for roughly the last 800,000 years. This record shows a distinctive pattern of warm interglacials with high values of atmospheric CO2 (~280 ppm) and cold glacials with CO2 as low as ~180 ppm. A leading hypothesis assumes that the CO2 that went “missing” from the atmosphere during the glacials was stored in the deep global ocean. Several studies suggest that during glacials, the main connection between the deep ocean and the surface/atmosphere – the Southern Ocean – was significantly interrupted or at least reduced. Until now, it was shown that the deglacial South Pacific, the Drake Passage, and the South Atlantic played a vital role in the release of the stored ... Article in Journal/Newspaper Antarc* Antarctica Drake Passage Southern Ocean Archimer (Archive Institutionnelle de l'Ifremer - Institut français de recherche pour l'exploitation de la mer) Southern Ocean Kerguelen Drake Passage Pacific Indian Conrad Rise ENVELOPE(41.000,41.000,-53.000,-53.000) Paleoceanography and Paleoclimatology 35 3