Synthesis of beryllian sapphirine in the system MgO-BeO-Al 2 O 3 -SiO 2 -H 2 O and comparison with naturally occurring beryllian sapphirine and khmaralite, part 2: A chemographic study of Be content as a function of P , T , assemblage and FeMg -1 exchange
Beryllium is a significant constituent in sapphirine in some metamorphic and pegmatitic rocks, and thus could have a major effect on its stability relationships. Using the stoichiometries of reactions involving sapphirine and associated phases in the MgO-BeO-Al2O3-SiO2 (MBeAS) system in conjunction...
Main Authors: | , |
---|---|
Format: | Article in Journal/Newspaper |
Language: | unknown |
Published: |
Mineralogical Society of America
|
Subjects: | |
Online Access: | http://hdl.handle.net/1885/86823 |
id |
ftanucanberra:oai:openresearch-repository.anu.edu.au:1885/86823 |
---|---|
record_format |
openpolar |
spelling |
ftanucanberra:oai:openresearch-repository.anu.edu.au:1885/86823 2024-01-14T09:59:36+01:00 Synthesis of beryllian sapphirine in the system MgO-BeO-Al 2 O 3 -SiO 2 -H 2 O and comparison with naturally occurring beryllian sapphirine and khmaralite, part 2: A chemographic study of Be content as a function of P , T , assemblage and FeMg -1 exchange Christy, Andrew Grew, ES http://hdl.handle.net/1885/86823 unknown Mineralogical Society of America 0003-004X http://hdl.handle.net/1885/86823 American Mineralogist Keywords: beryllium crystal structure mineral synthesis P-T conditions sapphirine Journal article ftanucanberra 2023-12-15T09:34:25Z Beryllium is a significant constituent in sapphirine in some metamorphic and pegmatitic rocks, and thus could have a major effect on its stability relationships. Using the stoichiometries of reactions involving sapphirine and associated phases in the MgO-BeO-Al2O3-SiO2 (MBeAS) system in conjunction with molar volume data, we have plotted maps of the sapphirine solid-solution field in both μ-μ and μ-P space, where μ is the chemical potential of an exchange component such as (BeSi)(AlAl)-1. These maps give a pressure sequence of stable MBeAS univariant reactions and divariant assemblages that are consistent with experimental data, e.g., they show how Be stabilizes sapphirine + forsterite, which is rare in nature but readily synthesized over a wide P-T range in the presence of Be. We generate a MBeAS petrogenetic grid for sapphirine-bearing assemblages over the approximate range T = 700-900 °C, P = 0-2.5 GPa, identify divariant and univariant assemblages containing sapphirine with maximum Be, and determine the sense of variation of maximum Be content with P. At lower T, maximum Be occurs at the low-P limit of surinamite stability, ca. 0.5 GPa. At higher T, maximum Be increases with P, following the MBeAS univariant reactions involving (sapphirine + surinamite + orthopyroxene + chrysoberyl + forsterite or spinel). Natural assemblages containing sapphirine and its Be-rich near-analog khmaralite from the Napier Complex, Enderby Land, East Antarctica formed at higher T (900-1100 °C) than the experiments and in bulk compositions containing substantial Fe. Associated minerals include garnet, sillimanite, quartz, and magnesiotaaffeite-6N′3S ("musgravite"), whereas forsterite is absent and cordierite is a local, late phase. μ(BeSi)(AlAl)-1-μFeMg-1 diagrams show that the stability of magnesiotaaffeite-6N′3S causes the maximally beryllian khmaralite to shift from a magnesian composition in equilibrium with orthopyroxene + surinamite + forsterite + chrysoberyl, as in the MBeAS subsystem, to a more Fe-rich composition ... Article in Journal/Newspaper Antarc* Antarctica East Antarctica Enderby Land Australian National University: ANU Digital Collections East Antarctica Napier ENVELOPE(-58.440,-58.440,-62.167,-62.167) |
institution |
Open Polar |
collection |
Australian National University: ANU Digital Collections |
op_collection_id |
ftanucanberra |
language |
unknown |
topic |
Keywords: beryllium crystal structure mineral synthesis P-T conditions sapphirine |
spellingShingle |
Keywords: beryllium crystal structure mineral synthesis P-T conditions sapphirine Christy, Andrew Grew, ES Synthesis of beryllian sapphirine in the system MgO-BeO-Al 2 O 3 -SiO 2 -H 2 O and comparison with naturally occurring beryllian sapphirine and khmaralite, part 2: A chemographic study of Be content as a function of P , T , assemblage and FeMg -1 exchange |
topic_facet |
Keywords: beryllium crystal structure mineral synthesis P-T conditions sapphirine |
description |
Beryllium is a significant constituent in sapphirine in some metamorphic and pegmatitic rocks, and thus could have a major effect on its stability relationships. Using the stoichiometries of reactions involving sapphirine and associated phases in the MgO-BeO-Al2O3-SiO2 (MBeAS) system in conjunction with molar volume data, we have plotted maps of the sapphirine solid-solution field in both μ-μ and μ-P space, where μ is the chemical potential of an exchange component such as (BeSi)(AlAl)-1. These maps give a pressure sequence of stable MBeAS univariant reactions and divariant assemblages that are consistent with experimental data, e.g., they show how Be stabilizes sapphirine + forsterite, which is rare in nature but readily synthesized over a wide P-T range in the presence of Be. We generate a MBeAS petrogenetic grid for sapphirine-bearing assemblages over the approximate range T = 700-900 °C, P = 0-2.5 GPa, identify divariant and univariant assemblages containing sapphirine with maximum Be, and determine the sense of variation of maximum Be content with P. At lower T, maximum Be occurs at the low-P limit of surinamite stability, ca. 0.5 GPa. At higher T, maximum Be increases with P, following the MBeAS univariant reactions involving (sapphirine + surinamite + orthopyroxene + chrysoberyl + forsterite or spinel). Natural assemblages containing sapphirine and its Be-rich near-analog khmaralite from the Napier Complex, Enderby Land, East Antarctica formed at higher T (900-1100 °C) than the experiments and in bulk compositions containing substantial Fe. Associated minerals include garnet, sillimanite, quartz, and magnesiotaaffeite-6N′3S ("musgravite"), whereas forsterite is absent and cordierite is a local, late phase. μ(BeSi)(AlAl)-1-μFeMg-1 diagrams show that the stability of magnesiotaaffeite-6N′3S causes the maximally beryllian khmaralite to shift from a magnesian composition in equilibrium with orthopyroxene + surinamite + forsterite + chrysoberyl, as in the MBeAS subsystem, to a more Fe-rich composition ... |
format |
Article in Journal/Newspaper |
author |
Christy, Andrew Grew, ES |
author_facet |
Christy, Andrew Grew, ES |
author_sort |
Christy, Andrew |
title |
Synthesis of beryllian sapphirine in the system MgO-BeO-Al 2 O 3 -SiO 2 -H 2 O and comparison with naturally occurring beryllian sapphirine and khmaralite, part 2: A chemographic study of Be content as a function of P , T , assemblage and FeMg -1 exchange |
title_short |
Synthesis of beryllian sapphirine in the system MgO-BeO-Al 2 O 3 -SiO 2 -H 2 O and comparison with naturally occurring beryllian sapphirine and khmaralite, part 2: A chemographic study of Be content as a function of P , T , assemblage and FeMg -1 exchange |
title_full |
Synthesis of beryllian sapphirine in the system MgO-BeO-Al 2 O 3 -SiO 2 -H 2 O and comparison with naturally occurring beryllian sapphirine and khmaralite, part 2: A chemographic study of Be content as a function of P , T , assemblage and FeMg -1 exchange |
title_fullStr |
Synthesis of beryllian sapphirine in the system MgO-BeO-Al 2 O 3 -SiO 2 -H 2 O and comparison with naturally occurring beryllian sapphirine and khmaralite, part 2: A chemographic study of Be content as a function of P , T , assemblage and FeMg -1 exchange |
title_full_unstemmed |
Synthesis of beryllian sapphirine in the system MgO-BeO-Al 2 O 3 -SiO 2 -H 2 O and comparison with naturally occurring beryllian sapphirine and khmaralite, part 2: A chemographic study of Be content as a function of P , T , assemblage and FeMg -1 exchange |
title_sort |
synthesis of beryllian sapphirine in the system mgo-beo-al 2 o 3 -sio 2 -h 2 o and comparison with naturally occurring beryllian sapphirine and khmaralite, part 2: a chemographic study of be content as a function of p , t , assemblage and femg -1 exchange |
publisher |
Mineralogical Society of America |
url |
http://hdl.handle.net/1885/86823 |
long_lat |
ENVELOPE(-58.440,-58.440,-62.167,-62.167) |
geographic |
East Antarctica Napier |
geographic_facet |
East Antarctica Napier |
genre |
Antarc* Antarctica East Antarctica Enderby Land |
genre_facet |
Antarc* Antarctica East Antarctica Enderby Land |
op_source |
American Mineralogist |
op_relation |
0003-004X http://hdl.handle.net/1885/86823 |
_version_ |
1788059878184452096 |