Seawater ²³⁴U/ ²³⁸U recorded by modern and fossil corals
U-series dating of corals is a crucial tool for generating absolute chronologies of Late Quaternary sea-level change and calibrating the radiocarbon timescale. Unfortunately, coralline aragonite is susceptible to post-depositional alteration of its primary geochemistry. One screening technique used...
Published in: | Geochimica et Cosmochimica Acta |
---|---|
Main Authors: | , , |
Format: | Article in Journal/Newspaper |
Language: | unknown |
Published: |
Elsevier
|
Subjects: | |
Online Access: | http://hdl.handle.net/1885/139093 https://doi.org/10.1016/j.gca.2017.12.017 https://openresearch-repository.anu.edu.au/bitstream/1885/139093/4/1-s2.0-S0016703717307937-main.pdf.jpg |
id |
ftanucanberra:oai:openresearch-repository.anu.edu.au:1885/139093 |
---|---|
record_format |
openpolar |
spelling |
ftanucanberra:oai:openresearch-repository.anu.edu.au:1885/139093 2024-01-14T10:07:44+01:00 Seawater ²³⁴U/ ²³⁸U recorded by modern and fossil corals Chutcharavan, Peter M. Dutton, Andrea Ellwood, Michael application/pdf http://hdl.handle.net/1885/139093 https://doi.org/10.1016/j.gca.2017.12.017 https://openresearch-repository.anu.edu.au/bitstream/1885/139093/4/1-s2.0-S0016703717307937-main.pdf.jpg unknown Elsevier 0016-7037 http://hdl.handle.net/1885/139093 doi:10.1016/j.gca.2017.12.017 https://openresearch-repository.anu.edu.au/bitstream/1885/139093/4/1-s2.0-S0016703717307937-main.pdf.jpg © 2017 Elsevier B.V. Geochimica et Cosmochimica Acta Journal article ftanucanberra https://doi.org/10.1016/j.gca.2017.12.017 2023-12-15T09:38:02Z U-series dating of corals is a crucial tool for generating absolute chronologies of Late Quaternary sea-level change and calibrating the radiocarbon timescale. Unfortunately, coralline aragonite is susceptible to post-depositional alteration of its primary geochemistry. One screening technique used to identify unaltered corals relies on the back-calculation of initial ²³⁴U/²³⁸U activity (δ ²³⁴Ui) at the time of coral growth and implicitly assumes that seawater δ ²³⁴U has remained constant during the Late Quaternary. Here, we test this assumption using the most comprehensive compilation to date of coral U-series measurements. Unlike previous compilations, this study normalizes U-series measurements to the same decay constants and corrects for offsets in interlaboratory calibrations, thus reducing systematic biases between reported δ ²³⁴U values. Using this approach, we reassess (a) the value of modern seawater δ ²³⁴U, and (b) the evolution of seawater δ²³⁴U over the last deglaciation. Modern coral δ²³⁴U values (145.0 ± 1.5 ‰) agree with previous measurements of seawater and modern corals only once the data have been normalized. Additionally, fossil corals in the surface ocean display δ²³⁴Ui values that are ∼5 to 7 ‰ lower during the last glacial maximum regardless of site, taxon, or diagenetic setting. We conclude that physical weathering of U-bearing minerals exposed during ice sheet retreat drives the increase in δ²³⁴U observed in the oceans, a mechanism that is consistent with the interpretation of the seawater Pb-isotope signal over the same timescale. Article in Journal/Newspaper Ice Sheet Australian National University: ANU Digital Collections Geochimica et Cosmochimica Acta 224 1 17 |
institution |
Open Polar |
collection |
Australian National University: ANU Digital Collections |
op_collection_id |
ftanucanberra |
language |
unknown |
description |
U-series dating of corals is a crucial tool for generating absolute chronologies of Late Quaternary sea-level change and calibrating the radiocarbon timescale. Unfortunately, coralline aragonite is susceptible to post-depositional alteration of its primary geochemistry. One screening technique used to identify unaltered corals relies on the back-calculation of initial ²³⁴U/²³⁸U activity (δ ²³⁴Ui) at the time of coral growth and implicitly assumes that seawater δ ²³⁴U has remained constant during the Late Quaternary. Here, we test this assumption using the most comprehensive compilation to date of coral U-series measurements. Unlike previous compilations, this study normalizes U-series measurements to the same decay constants and corrects for offsets in interlaboratory calibrations, thus reducing systematic biases between reported δ ²³⁴U values. Using this approach, we reassess (a) the value of modern seawater δ ²³⁴U, and (b) the evolution of seawater δ²³⁴U over the last deglaciation. Modern coral δ²³⁴U values (145.0 ± 1.5 ‰) agree with previous measurements of seawater and modern corals only once the data have been normalized. Additionally, fossil corals in the surface ocean display δ²³⁴Ui values that are ∼5 to 7 ‰ lower during the last glacial maximum regardless of site, taxon, or diagenetic setting. We conclude that physical weathering of U-bearing minerals exposed during ice sheet retreat drives the increase in δ²³⁴U observed in the oceans, a mechanism that is consistent with the interpretation of the seawater Pb-isotope signal over the same timescale. |
format |
Article in Journal/Newspaper |
author |
Chutcharavan, Peter M. Dutton, Andrea Ellwood, Michael |
spellingShingle |
Chutcharavan, Peter M. Dutton, Andrea Ellwood, Michael Seawater ²³⁴U/ ²³⁸U recorded by modern and fossil corals |
author_facet |
Chutcharavan, Peter M. Dutton, Andrea Ellwood, Michael |
author_sort |
Chutcharavan, Peter M. |
title |
Seawater ²³⁴U/ ²³⁸U recorded by modern and fossil corals |
title_short |
Seawater ²³⁴U/ ²³⁸U recorded by modern and fossil corals |
title_full |
Seawater ²³⁴U/ ²³⁸U recorded by modern and fossil corals |
title_fullStr |
Seawater ²³⁴U/ ²³⁸U recorded by modern and fossil corals |
title_full_unstemmed |
Seawater ²³⁴U/ ²³⁸U recorded by modern and fossil corals |
title_sort |
seawater ²³⁴u/ ²³⁸u recorded by modern and fossil corals |
publisher |
Elsevier |
url |
http://hdl.handle.net/1885/139093 https://doi.org/10.1016/j.gca.2017.12.017 https://openresearch-repository.anu.edu.au/bitstream/1885/139093/4/1-s2.0-S0016703717307937-main.pdf.jpg |
genre |
Ice Sheet |
genre_facet |
Ice Sheet |
op_source |
Geochimica et Cosmochimica Acta |
op_relation |
0016-7037 http://hdl.handle.net/1885/139093 doi:10.1016/j.gca.2017.12.017 https://openresearch-repository.anu.edu.au/bitstream/1885/139093/4/1-s2.0-S0016703717307937-main.pdf.jpg |
op_rights |
© 2017 Elsevier B.V. |
op_doi |
https://doi.org/10.1016/j.gca.2017.12.017 |
container_title |
Geochimica et Cosmochimica Acta |
container_volume |
224 |
container_start_page |
1 |
op_container_end_page |
17 |
_version_ |
1788062134498754560 |