The source of granitic gneisses and migmatites in the Antarctic peninsula: a combined U-Pb SHRIMP and laser ablation Hf isotope study of complex zircons
Zircons gneisses and migmatites collected from the Antarctic Peninsula have different core-rim hafnium isotope ratio relationships depending on whether evidence for zircon dissolution is present or absent. Two samples contain inherited zircon that is partially dissolved. In these samples, the 176Hf/...
Main Authors: | , , , , |
---|---|
Format: | Article in Journal/Newspaper |
Language: | unknown |
Published: |
Springer
2015
|
Subjects: | |
Online Access: | http://hdl.handle.net/1885/24560 |
id |
ftanucanberra:oai:digitalcollections.anu.edu.au:1885/24560 |
---|---|
record_format |
openpolar |
spelling |
ftanucanberra:oai:digitalcollections.anu.edu.au:1885/24560 2023-05-15T13:56:14+02:00 The source of granitic gneisses and migmatites in the Antarctic peninsula: a combined U-Pb SHRIMP and laser ablation Hf isotope study of complex zircons Flowerdew, M J Millar, Ian L Vaughan, A P M Horstwood, M S A Fanning, Christopher 2015-12-07T22:42:29Z http://hdl.handle.net/1885/24560 unknown Springer 0010-7999 http://hdl.handle.net/1885/24560 Contributions to Mineralogy and Petrology Keywords: gneiss hafnium migmatite zircon Antarctic Peninsula Antarctica West Antarctica Journal article 2015 ftanucanberra 2015-12-28T23:20:58Z Zircons gneisses and migmatites collected from the Antarctic Peninsula have different core-rim hafnium isotope ratio relationships depending on whether evidence for zircon dissolution is present or absent. Two samples contain inherited zircon that is partially dissolved. In these samples, the 176Hf/177Hf rations of the inherited zircon and new magmatic zircon rims are, on average, indistinguishable and consistent with in situ melting. In such cases the hafnium isotopic composition of the melt was probably strongly influenced by the dissolved zircon component at the source. Variation in 176Hf/ 177Hf within the magmatic zircon rims from grain to grain suggests that Hf isotopes were only partially homogenized during melt migration; alternatively, zircon growth may have taken place within small volumes of partial melt. Other samples do not preserve textural evidence for zircon dissolution during melt generation; in these samples the 176Hf/177Hf values of the inherited zircon and new magmatic zircon rims are different. The zircon rims apparently suggest a source of less evolved hafnium than that contained within the inherited zircon. Whether this relates to a separate juvenile source or, alternatively, is derived from minerals other than zircon at the source, cannot be resolved. Inherited zircon, irrespective of age, has been strongly influenced by the reworking of a juvenile Late Mesoproterozoic source, suggesting that such crust underlies the Antarctic Peninsula. Our results therefore suggest that Hf isotope analyses provide great potential for future studies investigating the source and processes involved in the generation of crustal melts. Article in Journal/Newspaper Antarc* Antarctic Antarctic Peninsula Antarctica West Antarctica Australian National University: ANU Digital Collections Antarctic Antarctic Peninsula The Antarctic West Antarctica |
institution |
Open Polar |
collection |
Australian National University: ANU Digital Collections |
op_collection_id |
ftanucanberra |
language |
unknown |
topic |
Keywords: gneiss hafnium migmatite zircon Antarctic Peninsula Antarctica West Antarctica |
spellingShingle |
Keywords: gneiss hafnium migmatite zircon Antarctic Peninsula Antarctica West Antarctica Flowerdew, M J Millar, Ian L Vaughan, A P M Horstwood, M S A Fanning, Christopher The source of granitic gneisses and migmatites in the Antarctic peninsula: a combined U-Pb SHRIMP and laser ablation Hf isotope study of complex zircons |
topic_facet |
Keywords: gneiss hafnium migmatite zircon Antarctic Peninsula Antarctica West Antarctica |
description |
Zircons gneisses and migmatites collected from the Antarctic Peninsula have different core-rim hafnium isotope ratio relationships depending on whether evidence for zircon dissolution is present or absent. Two samples contain inherited zircon that is partially dissolved. In these samples, the 176Hf/177Hf rations of the inherited zircon and new magmatic zircon rims are, on average, indistinguishable and consistent with in situ melting. In such cases the hafnium isotopic composition of the melt was probably strongly influenced by the dissolved zircon component at the source. Variation in 176Hf/ 177Hf within the magmatic zircon rims from grain to grain suggests that Hf isotopes were only partially homogenized during melt migration; alternatively, zircon growth may have taken place within small volumes of partial melt. Other samples do not preserve textural evidence for zircon dissolution during melt generation; in these samples the 176Hf/177Hf values of the inherited zircon and new magmatic zircon rims are different. The zircon rims apparently suggest a source of less evolved hafnium than that contained within the inherited zircon. Whether this relates to a separate juvenile source or, alternatively, is derived from minerals other than zircon at the source, cannot be resolved. Inherited zircon, irrespective of age, has been strongly influenced by the reworking of a juvenile Late Mesoproterozoic source, suggesting that such crust underlies the Antarctic Peninsula. Our results therefore suggest that Hf isotope analyses provide great potential for future studies investigating the source and processes involved in the generation of crustal melts. |
format |
Article in Journal/Newspaper |
author |
Flowerdew, M J Millar, Ian L Vaughan, A P M Horstwood, M S A Fanning, Christopher |
author_facet |
Flowerdew, M J Millar, Ian L Vaughan, A P M Horstwood, M S A Fanning, Christopher |
author_sort |
Flowerdew, M J |
title |
The source of granitic gneisses and migmatites in the Antarctic peninsula: a combined U-Pb SHRIMP and laser ablation Hf isotope study of complex zircons |
title_short |
The source of granitic gneisses and migmatites in the Antarctic peninsula: a combined U-Pb SHRIMP and laser ablation Hf isotope study of complex zircons |
title_full |
The source of granitic gneisses and migmatites in the Antarctic peninsula: a combined U-Pb SHRIMP and laser ablation Hf isotope study of complex zircons |
title_fullStr |
The source of granitic gneisses and migmatites in the Antarctic peninsula: a combined U-Pb SHRIMP and laser ablation Hf isotope study of complex zircons |
title_full_unstemmed |
The source of granitic gneisses and migmatites in the Antarctic peninsula: a combined U-Pb SHRIMP and laser ablation Hf isotope study of complex zircons |
title_sort |
source of granitic gneisses and migmatites in the antarctic peninsula: a combined u-pb shrimp and laser ablation hf isotope study of complex zircons |
publisher |
Springer |
publishDate |
2015 |
url |
http://hdl.handle.net/1885/24560 |
geographic |
Antarctic Antarctic Peninsula The Antarctic West Antarctica |
geographic_facet |
Antarctic Antarctic Peninsula The Antarctic West Antarctica |
genre |
Antarc* Antarctic Antarctic Peninsula Antarctica West Antarctica |
genre_facet |
Antarc* Antarctic Antarctic Peninsula Antarctica West Antarctica |
op_source |
Contributions to Mineralogy and Petrology |
op_relation |
0010-7999 http://hdl.handle.net/1885/24560 |
_version_ |
1766263609374015488 |