Asteroid impact ejecta units overlain by iron-rich sediments in 3.5-2.4 Ga terrains, Pilbara and Kaapvaal cratons: Accidental or cause-effect relationships?

The significance of temporal and spatial associations between asteroid/comet impact ejecta units and overlying iron-rich sediments, including banded iron-formation (BIF), jaspilite and ferruginous shale, observed in the Pilbara Craton, Western Australia and the Barberton Greenstone Belt (BGB), Kaapv...

Full description

Bibliographic Details
Main Author: Glikson, Andrew
Format: Article in Journal/Newspaper
Language:unknown
Published: Elsevier 2015
Subjects:
Online Access:http://hdl.handle.net/1885/19325
id ftanucanberra:oai:digitalcollections.anu.edu.au:1885/19325
record_format openpolar
spelling ftanucanberra:oai:digitalcollections.anu.edu.au:1885/19325 2023-05-15T13:38:43+02:00 Asteroid impact ejecta units overlain by iron-rich sediments in 3.5-2.4 Ga terrains, Pilbara and Kaapvaal cratons: Accidental or cause-effect relationships? Glikson, Andrew 2015-12-07T22:19:24Z http://hdl.handle.net/1885/19325 unknown Elsevier 0012-821X http://hdl.handle.net/1885/19325 Earth and Planetary Science Letters Keywords: Banded iron-formation Ferruginous shale Jaspilite Colloids Iron Oxygen Seawater Sedimentation Stratigraphy Volcanoes Sedimentary rocks asteroid ejecta sediment terrain Australasia Australia Pilbara Block Western Australia Archaean asteroid impact banded iron-formation early Proterozoic Journal article 2015 ftanucanberra 2015-12-21T23:18:39Z The significance of temporal and spatial associations between asteroid/comet impact ejecta units and overlying iron-rich sediments, including banded iron-formation (BIF), jaspilite and ferruginous shale, observed in the Pilbara Craton, Western Australia and the Barberton Greenstone Belt (BGB), Kaapvaal Craton, South Africa, is considered. Such associations include (1) 3470.1 ± 1.9 Ma impact spherule units and tsunami-type breccia overlain by jaspilite in the Antarctic Chert Member, central Pilbara Craton; (2) 3258 ± 3 Ma impact spherule unit (S2) in the BGB overlain by BIF, jaspilite and ferruginous shale; (3) 3243 ± 4 Ma impact unit (S3) in the BGB overlain by iron-rich sediments (Ulundi Formation); (4) two formations of BIF and ferruginous shale at the base (Nimmingarra Iron Formation) and lower part (Paddy Market Formation) of the Gorge Creek Group, central Pilbara Craton, which overlie 3235 ± 3 Ma felsic volcanics along a boundary correlated with the BGB-S3 unit; (5) 2629 ± 5 Ma impact spherule unit and tsunami-type deposit overlain by BIF and ferruginous shale (Marra Mamba Iron Formation), central Pilbara Craton; (5) 2481 ± 4 Ma spherule unit intercalated at the lower part of the Dales Gorge Iron Member of the Brockman Iron Formation, Hamersley Basin, and possible equivalents in the Kuruman Formation, western Transvaal. No significant thicknesses of iron-rich sediments are known to overlie carbonate-hosted impact ejecta units, including the Bee Gorge Member (BGM) of the Wittenoom Formation (2561 ± 8 Ma), Carawine Dolomite (eastern Hamersley Basin, Pilbara Craton), Monteville Formation and Reivilo Formation (Griqualand West Basin, Transvaal Group), or the Graensco-Vallen spherule occurrence (southwest Greenland). The juxtaposition between impact ejecta units and overlying BIF and jaspilite may be accidental or purely related to preservation of these units in below-wave-base environments. Alternatively, this association may hint at enrichment of seawater in soluble iron under low-oxygen atmosphere/hydrosphere conditions due to enhanced denudation of mafic volcanic terrains uplifted/exposed through impact-induced tectonic movements and/or impact-triggered mafic volcanic and hydrothermal activity. The general absence of iron-rich sediments above carbonate-hosted impact ejecta units may be attributed to lack of Fe enrichment or to pH and Eh conditions unsuitable for the precipitation of iron oxides. The near-absence of BIF in high-energy shallow water environments overlying impact ejecta units may reflect retardation of colloidal/chemical sedimentation in such environments. A systematic association between impact ejecta and iron-rich sediments, if confirmed, may yield useful stratigraphic tracers in the search for impact signatures in early Precambrian terrains. Article in Journal/Newspaper Antarc* Antarctic Greenland Australian National University: ANU Digital Collections Antarctic Gorge Creek ENVELOPE(-136.090,-136.090,61.443,61.443) Greenland The Antarctic Vallen ENVELOPE(23.917,23.917,65.667,65.667)
institution Open Polar
collection Australian National University: ANU Digital Collections
op_collection_id ftanucanberra
language unknown
topic Keywords: Banded iron-formation
Ferruginous shale
Jaspilite
Colloids
Iron
Oxygen
Seawater
Sedimentation
Stratigraphy
Volcanoes
Sedimentary rocks
asteroid
ejecta
sediment
terrain
Australasia
Australia
Pilbara Block
Western Australia
Archaean
asteroid impact
banded iron-formation
early Proterozoic
spellingShingle Keywords: Banded iron-formation
Ferruginous shale
Jaspilite
Colloids
Iron
Oxygen
Seawater
Sedimentation
Stratigraphy
Volcanoes
Sedimentary rocks
asteroid
ejecta
sediment
terrain
Australasia
Australia
Pilbara Block
Western Australia
Archaean
asteroid impact
banded iron-formation
early Proterozoic
Glikson, Andrew
Asteroid impact ejecta units overlain by iron-rich sediments in 3.5-2.4 Ga terrains, Pilbara and Kaapvaal cratons: Accidental or cause-effect relationships?
topic_facet Keywords: Banded iron-formation
Ferruginous shale
Jaspilite
Colloids
Iron
Oxygen
Seawater
Sedimentation
Stratigraphy
Volcanoes
Sedimentary rocks
asteroid
ejecta
sediment
terrain
Australasia
Australia
Pilbara Block
Western Australia
Archaean
asteroid impact
banded iron-formation
early Proterozoic
description The significance of temporal and spatial associations between asteroid/comet impact ejecta units and overlying iron-rich sediments, including banded iron-formation (BIF), jaspilite and ferruginous shale, observed in the Pilbara Craton, Western Australia and the Barberton Greenstone Belt (BGB), Kaapvaal Craton, South Africa, is considered. Such associations include (1) 3470.1 ± 1.9 Ma impact spherule units and tsunami-type breccia overlain by jaspilite in the Antarctic Chert Member, central Pilbara Craton; (2) 3258 ± 3 Ma impact spherule unit (S2) in the BGB overlain by BIF, jaspilite and ferruginous shale; (3) 3243 ± 4 Ma impact unit (S3) in the BGB overlain by iron-rich sediments (Ulundi Formation); (4) two formations of BIF and ferruginous shale at the base (Nimmingarra Iron Formation) and lower part (Paddy Market Formation) of the Gorge Creek Group, central Pilbara Craton, which overlie 3235 ± 3 Ma felsic volcanics along a boundary correlated with the BGB-S3 unit; (5) 2629 ± 5 Ma impact spherule unit and tsunami-type deposit overlain by BIF and ferruginous shale (Marra Mamba Iron Formation), central Pilbara Craton; (5) 2481 ± 4 Ma spherule unit intercalated at the lower part of the Dales Gorge Iron Member of the Brockman Iron Formation, Hamersley Basin, and possible equivalents in the Kuruman Formation, western Transvaal. No significant thicknesses of iron-rich sediments are known to overlie carbonate-hosted impact ejecta units, including the Bee Gorge Member (BGM) of the Wittenoom Formation (2561 ± 8 Ma), Carawine Dolomite (eastern Hamersley Basin, Pilbara Craton), Monteville Formation and Reivilo Formation (Griqualand West Basin, Transvaal Group), or the Graensco-Vallen spherule occurrence (southwest Greenland). The juxtaposition between impact ejecta units and overlying BIF and jaspilite may be accidental or purely related to preservation of these units in below-wave-base environments. Alternatively, this association may hint at enrichment of seawater in soluble iron under low-oxygen atmosphere/hydrosphere conditions due to enhanced denudation of mafic volcanic terrains uplifted/exposed through impact-induced tectonic movements and/or impact-triggered mafic volcanic and hydrothermal activity. The general absence of iron-rich sediments above carbonate-hosted impact ejecta units may be attributed to lack of Fe enrichment or to pH and Eh conditions unsuitable for the precipitation of iron oxides. The near-absence of BIF in high-energy shallow water environments overlying impact ejecta units may reflect retardation of colloidal/chemical sedimentation in such environments. A systematic association between impact ejecta and iron-rich sediments, if confirmed, may yield useful stratigraphic tracers in the search for impact signatures in early Precambrian terrains.
format Article in Journal/Newspaper
author Glikson, Andrew
author_facet Glikson, Andrew
author_sort Glikson, Andrew
title Asteroid impact ejecta units overlain by iron-rich sediments in 3.5-2.4 Ga terrains, Pilbara and Kaapvaal cratons: Accidental or cause-effect relationships?
title_short Asteroid impact ejecta units overlain by iron-rich sediments in 3.5-2.4 Ga terrains, Pilbara and Kaapvaal cratons: Accidental or cause-effect relationships?
title_full Asteroid impact ejecta units overlain by iron-rich sediments in 3.5-2.4 Ga terrains, Pilbara and Kaapvaal cratons: Accidental or cause-effect relationships?
title_fullStr Asteroid impact ejecta units overlain by iron-rich sediments in 3.5-2.4 Ga terrains, Pilbara and Kaapvaal cratons: Accidental or cause-effect relationships?
title_full_unstemmed Asteroid impact ejecta units overlain by iron-rich sediments in 3.5-2.4 Ga terrains, Pilbara and Kaapvaal cratons: Accidental or cause-effect relationships?
title_sort asteroid impact ejecta units overlain by iron-rich sediments in 3.5-2.4 ga terrains, pilbara and kaapvaal cratons: accidental or cause-effect relationships?
publisher Elsevier
publishDate 2015
url http://hdl.handle.net/1885/19325
long_lat ENVELOPE(-136.090,-136.090,61.443,61.443)
ENVELOPE(23.917,23.917,65.667,65.667)
geographic Antarctic
Gorge Creek
Greenland
The Antarctic
Vallen
geographic_facet Antarctic
Gorge Creek
Greenland
The Antarctic
Vallen
genre Antarc*
Antarctic
Greenland
genre_facet Antarc*
Antarctic
Greenland
op_source Earth and Planetary Science Letters
op_relation 0012-821X
http://hdl.handle.net/1885/19325
_version_ 1766110391513907200