Why are biotic iron pools uniform across high- and low-iron pelagic ecosystems?

Dissolved iron supply is pivotal in setting global phytoplankton productivity and pelagic ecosystem structure. However, most studies of the role of iron have focussed on carbon biogeochemistry within pelagic ecosystems, with less effort to quantify the iron biogeochemical cycle. Here we compare mixe...

Full description

Bibliographic Details
Main Authors: Boyd, Philip W., Strzepek, Robert, Ellwood, Michael, Hutchins, D.A., Nodder, Scott D, Twining, B.S., Wilhelm, S W
Format: Article in Journal/Newspaper
Language:unknown
Published: American Geophysical Union 2016
Subjects:
Online Access:http://hdl.handle.net/1885/103195
id ftanucanberra:oai:digitalcollections.anu.edu.au:1885/103195
record_format openpolar
spelling ftanucanberra:oai:digitalcollections.anu.edu.au:1885/103195 2023-05-15T18:25:54+02:00 Why are biotic iron pools uniform across high- and low-iron pelagic ecosystems? Boyd, Philip W. Strzepek, Robert Ellwood, Michael Hutchins, D.A. Nodder, Scott D Twining, B.S. Wilhelm, S W 2016-06-14T23:20:05Z http://hdl.handle.net/1885/103195 unknown American Geophysical Union 0886-6236 http://hdl.handle.net/1885/103195 Global Biogeochemical Cycles Journal article 2016 ftanucanberra 2016-06-20T22:19:51Z Dissolved iron supply is pivotal in setting global phytoplankton productivity and pelagic ecosystem structure. However, most studies of the role of iron have focussed on carbon biogeochemistry within pelagic ecosystems, with less effort to quantify the iron biogeochemical cycle. Here we compare mixed-layer biotic iron inventories from a low-iron (~0.06nmol L-1) subantarctic (FeCycle study) and a seasonally high-iron (~0.6nmol L-1) subtropical (FeCycle II study) site. Both studies were quasi-Lagrangian, and had multi-day occupation, common sampling protocols, and indirect estimates of biotic iron (from a limited range of available published biovolume/carbon/iron quotas). Biotic iron pools were comparable (~100±30pmol L-1) for low- and high-iron waters, despite a tenfold difference in dissolved iron concentrations. Consistency in biotic iron inventories (~80±24pmol L-1, largely estimated using a limited range of available quotas) was also conspicuous for three Southern Ocean polar sites. Insights into the extent to which uniformity in biotic iron inventories was driven by the need to apply common iron quotas obtained from laboratory cultures were provided from FeCycle II. The observed twofold to threefold range of iron quotas during the evolution of FeCycle II subtropical bloom was much less than reported from laboratory monocultures. Furthermore, the iron recycling efficiency varied by fourfold during FeCycle II, increasing as stocks of new iron were depleted, suggesting that quotas and iron recycling efficiencies together set biotic iron pools. Hence, site-specific differences in iron recycling efficiencies (which provide 20-50% and 90% of total iron supply in high- and low-iron waters, respectively) help offset the differences in new iron inputs between low- and high-iron sites. Future parameterization of iron in biogeochemical models must focus on the drivers of biotic iron inventories, including the differing iron requirements of the resident biota, and the subsequent fate (retention/export/recycling) of the biotic iron. Article in Journal/Newspaper Southern Ocean Australian National University: ANU Digital Collections Southern Ocean
institution Open Polar
collection Australian National University: ANU Digital Collections
op_collection_id ftanucanberra
language unknown
description Dissolved iron supply is pivotal in setting global phytoplankton productivity and pelagic ecosystem structure. However, most studies of the role of iron have focussed on carbon biogeochemistry within pelagic ecosystems, with less effort to quantify the iron biogeochemical cycle. Here we compare mixed-layer biotic iron inventories from a low-iron (~0.06nmol L-1) subantarctic (FeCycle study) and a seasonally high-iron (~0.6nmol L-1) subtropical (FeCycle II study) site. Both studies were quasi-Lagrangian, and had multi-day occupation, common sampling protocols, and indirect estimates of biotic iron (from a limited range of available published biovolume/carbon/iron quotas). Biotic iron pools were comparable (~100±30pmol L-1) for low- and high-iron waters, despite a tenfold difference in dissolved iron concentrations. Consistency in biotic iron inventories (~80±24pmol L-1, largely estimated using a limited range of available quotas) was also conspicuous for three Southern Ocean polar sites. Insights into the extent to which uniformity in biotic iron inventories was driven by the need to apply common iron quotas obtained from laboratory cultures were provided from FeCycle II. The observed twofold to threefold range of iron quotas during the evolution of FeCycle II subtropical bloom was much less than reported from laboratory monocultures. Furthermore, the iron recycling efficiency varied by fourfold during FeCycle II, increasing as stocks of new iron were depleted, suggesting that quotas and iron recycling efficiencies together set biotic iron pools. Hence, site-specific differences in iron recycling efficiencies (which provide 20-50% and 90% of total iron supply in high- and low-iron waters, respectively) help offset the differences in new iron inputs between low- and high-iron sites. Future parameterization of iron in biogeochemical models must focus on the drivers of biotic iron inventories, including the differing iron requirements of the resident biota, and the subsequent fate (retention/export/recycling) of the biotic iron.
format Article in Journal/Newspaper
author Boyd, Philip W.
Strzepek, Robert
Ellwood, Michael
Hutchins, D.A.
Nodder, Scott D
Twining, B.S.
Wilhelm, S W
spellingShingle Boyd, Philip W.
Strzepek, Robert
Ellwood, Michael
Hutchins, D.A.
Nodder, Scott D
Twining, B.S.
Wilhelm, S W
Why are biotic iron pools uniform across high- and low-iron pelagic ecosystems?
author_facet Boyd, Philip W.
Strzepek, Robert
Ellwood, Michael
Hutchins, D.A.
Nodder, Scott D
Twining, B.S.
Wilhelm, S W
author_sort Boyd, Philip W.
title Why are biotic iron pools uniform across high- and low-iron pelagic ecosystems?
title_short Why are biotic iron pools uniform across high- and low-iron pelagic ecosystems?
title_full Why are biotic iron pools uniform across high- and low-iron pelagic ecosystems?
title_fullStr Why are biotic iron pools uniform across high- and low-iron pelagic ecosystems?
title_full_unstemmed Why are biotic iron pools uniform across high- and low-iron pelagic ecosystems?
title_sort why are biotic iron pools uniform across high- and low-iron pelagic ecosystems?
publisher American Geophysical Union
publishDate 2016
url http://hdl.handle.net/1885/103195
geographic Southern Ocean
geographic_facet Southern Ocean
genre Southern Ocean
genre_facet Southern Ocean
op_source Global Biogeochemical Cycles
op_relation 0886-6236
http://hdl.handle.net/1885/103195
_version_ 1766207621374672896