Chemical characterisation and source identification of atmospheric aerosols in the Snowy Mountains, south-eastern Australia

Characterisation of atmospheric aerosols is of major importance for: climate, the hydrological cycle, human health and policymaking, biogeochemical and palaeo-climatological studies. In this study, the chemical composition and source apportionment of PM2.5 (particulate matter with aerodynamic diamet...

Full description

Bibliographic Details
Published in:Science of The Total Environment
Main Authors: Tadros, CV, Crawford, J, Treble, PC, Baker, A, Cohen, DD, Atanacio, AJ, Hankin, S, Roach, R
Format: Article in Journal/Newspaper
Language:English
Published: Elsevier 2020
Subjects:
Online Access:http://apo.ansto.gov.au/dspace/handle/10238/9765
id ftansto:oai:apo-prod.ansto.gov.au:10238/9765
record_format openpolar
spelling ftansto:oai:apo-prod.ansto.gov.au:10238/9765 2023-05-15T18:25:56+02:00 Chemical characterisation and source identification of atmospheric aerosols in the Snowy Mountains, south-eastern Australia Tadros, CV Crawford, J Treble, PC Baker, A Cohen, DD Atanacio, AJ Hankin, S Roach, R 2020-08-14 http://apo.ansto.gov.au/dspace/handle/10238/9765 en eng Elsevier Tadros, C. V., Crawford, J., Treble, P. C., Baker, A., Cohen, D. D., Atanacio, A. J., Hankin, S. & Roach, R. (2018). Chemical characterisation and source identification of atmospheric aerosols in the Snowy Mountains, south-eastern Australia. Science of the Total Environment, 630, 432-443. doi:org/10.1016/j.scitotenv.2018.02.231 0048-9697 htpps://doi.org/10.1016/j.scitotenv.2018.02.231 http://apo.ansto.gov.au/dspace/handle/10238/9765 El Nino Trace elements Aerosols Atmospheric chemistry Carbon Climactic change Factorization Fossil fuel power plants Ion beams Landforms Nickel Particulates Soils Sulfur compounds Journal Article 2020 ftansto https://doi.org/10.1016/j.scitotenv.2018.02.231 2020-09-07T22:28:47Z Characterisation of atmospheric aerosols is of major importance for: climate, the hydrological cycle, human health and policymaking, biogeochemical and palaeo-climatological studies. In this study, the chemical composition and source apportionment of PM2.5 (particulate matter with aerodynamic diameters less than 2.5 μm) at Yarrangobilly, in the Snowy Mountains, SE Australia are examined and quantified. A new aerosol monitoring network was deployed in June 2013 and aerosol samples collected during the period July 2013 to July 2017 were analysed for 22 trace elements and black carbon by ion beam analysis techniques. Positive matrix factorisation and back trajectory analysis and trajectory clustering methods were employed for source apportionment and to isolate source areas and air mass travel pathways, respectively. This study identified the mean atmospheric PM2.5 mass concentration for the study period was (3.3 ± 2.5) μg m−3. It is shown that automobile (44.9 ± 0.8)%, secondary sulfate (21.4 ± 0.9)%, smoke (12.3 ± 0.6)%, soil (11.3 ± 0.5)% and aged sea salt (10.1 ± 0.4)% were the five PM2.5 source types, each with its own distinctive trends. The automobile and smoke sources were ascribed to a significant local influence from the road network and bushfire and hazard reduction burns, respectively. Long-range transport are the dominant sources for secondary sulfate from coal-fired power stations, windblown soil from the inland saline regions of the Lake Eyre and Murray-Darling Basins, and aged sea salt from the Southern Ocean to the remote alpine study site. The impact of recent climate change was recognised, as elevated smoke and windblown soil events correlated with drought and El Niño periods. Finally, the overall implications including potential aerosol derived proxies for interpreting palaeo-archives are discussed. To our knowledge, this is the first long-term detailed temporal and spatial characterisation of PM2.5 aerosols for the region and provides a crucial dataset for a range of multidisciplinary research. Crown Copyright © 2018 Published by Elsevier B.V. Article in Journal/Newspaper Southern Ocean Australian Nuclear Science and Technology Organisation: ANSTO Publications Online Southern Ocean Science of The Total Environment 630 432 443
institution Open Polar
collection Australian Nuclear Science and Technology Organisation: ANSTO Publications Online
op_collection_id ftansto
language English
topic El Nino
Trace elements
Aerosols
Atmospheric chemistry
Carbon
Climactic change
Factorization
Fossil fuel power plants
Ion beams
Landforms
Nickel
Particulates
Soils
Sulfur compounds
spellingShingle El Nino
Trace elements
Aerosols
Atmospheric chemistry
Carbon
Climactic change
Factorization
Fossil fuel power plants
Ion beams
Landforms
Nickel
Particulates
Soils
Sulfur compounds
Tadros, CV
Crawford, J
Treble, PC
Baker, A
Cohen, DD
Atanacio, AJ
Hankin, S
Roach, R
Chemical characterisation and source identification of atmospheric aerosols in the Snowy Mountains, south-eastern Australia
topic_facet El Nino
Trace elements
Aerosols
Atmospheric chemistry
Carbon
Climactic change
Factorization
Fossil fuel power plants
Ion beams
Landforms
Nickel
Particulates
Soils
Sulfur compounds
description Characterisation of atmospheric aerosols is of major importance for: climate, the hydrological cycle, human health and policymaking, biogeochemical and palaeo-climatological studies. In this study, the chemical composition and source apportionment of PM2.5 (particulate matter with aerodynamic diameters less than 2.5 μm) at Yarrangobilly, in the Snowy Mountains, SE Australia are examined and quantified. A new aerosol monitoring network was deployed in June 2013 and aerosol samples collected during the period July 2013 to July 2017 were analysed for 22 trace elements and black carbon by ion beam analysis techniques. Positive matrix factorisation and back trajectory analysis and trajectory clustering methods were employed for source apportionment and to isolate source areas and air mass travel pathways, respectively. This study identified the mean atmospheric PM2.5 mass concentration for the study period was (3.3 ± 2.5) μg m−3. It is shown that automobile (44.9 ± 0.8)%, secondary sulfate (21.4 ± 0.9)%, smoke (12.3 ± 0.6)%, soil (11.3 ± 0.5)% and aged sea salt (10.1 ± 0.4)% were the five PM2.5 source types, each with its own distinctive trends. The automobile and smoke sources were ascribed to a significant local influence from the road network and bushfire and hazard reduction burns, respectively. Long-range transport are the dominant sources for secondary sulfate from coal-fired power stations, windblown soil from the inland saline regions of the Lake Eyre and Murray-Darling Basins, and aged sea salt from the Southern Ocean to the remote alpine study site. The impact of recent climate change was recognised, as elevated smoke and windblown soil events correlated with drought and El Niño periods. Finally, the overall implications including potential aerosol derived proxies for interpreting palaeo-archives are discussed. To our knowledge, this is the first long-term detailed temporal and spatial characterisation of PM2.5 aerosols for the region and provides a crucial dataset for a range of multidisciplinary research. Crown Copyright © 2018 Published by Elsevier B.V.
format Article in Journal/Newspaper
author Tadros, CV
Crawford, J
Treble, PC
Baker, A
Cohen, DD
Atanacio, AJ
Hankin, S
Roach, R
author_facet Tadros, CV
Crawford, J
Treble, PC
Baker, A
Cohen, DD
Atanacio, AJ
Hankin, S
Roach, R
author_sort Tadros, CV
title Chemical characterisation and source identification of atmospheric aerosols in the Snowy Mountains, south-eastern Australia
title_short Chemical characterisation and source identification of atmospheric aerosols in the Snowy Mountains, south-eastern Australia
title_full Chemical characterisation and source identification of atmospheric aerosols in the Snowy Mountains, south-eastern Australia
title_fullStr Chemical characterisation and source identification of atmospheric aerosols in the Snowy Mountains, south-eastern Australia
title_full_unstemmed Chemical characterisation and source identification of atmospheric aerosols in the Snowy Mountains, south-eastern Australia
title_sort chemical characterisation and source identification of atmospheric aerosols in the snowy mountains, south-eastern australia
publisher Elsevier
publishDate 2020
url http://apo.ansto.gov.au/dspace/handle/10238/9765
geographic Southern Ocean
geographic_facet Southern Ocean
genre Southern Ocean
genre_facet Southern Ocean
op_relation Tadros, C. V., Crawford, J., Treble, P. C., Baker, A., Cohen, D. D., Atanacio, A. J., Hankin, S. & Roach, R. (2018). Chemical characterisation and source identification of atmospheric aerosols in the Snowy Mountains, south-eastern Australia. Science of the Total Environment, 630, 432-443. doi:org/10.1016/j.scitotenv.2018.02.231
0048-9697
htpps://doi.org/10.1016/j.scitotenv.2018.02.231
http://apo.ansto.gov.au/dspace/handle/10238/9765
op_doi https://doi.org/10.1016/j.scitotenv.2018.02.231
container_title Science of The Total Environment
container_volume 630
container_start_page 432
op_container_end_page 443
_version_ 1766207675699298304