21Ne, 10Be and 26Al cosmogenic burial ages of near-surface eolian sand from the Packard Dune field, McMurdo Dry Valleys, Antarctica.
The McMurdo Dry Valleys, Antarctica, have been ice-free for at least 10 Ma. In Victoria Valley, the largest of the Dry Valleys, permafrosted yet still actively migrating dune-fields, occupy an area of 8 km2 with dune thicknesses varying from 5 to 70 meters. High-resolution ground penetrating radar (...
Main Authors: | , , , , |
---|---|
Format: | Other/Unknown Material |
Language: | English |
Published: |
19th International Union for Quaternary Science Congress
2015
|
Subjects: | |
Online Access: | http://apo.ansto.gov.au/dspace/handle/10238/6199 http://inqua2015.jp/program/INQUA2015program.pdf |
id |
ftansto:oai:apo-prod.ansto.gov.au:10238/6199 |
---|---|
record_format |
openpolar |
spelling |
ftansto:oai:apo-prod.ansto.gov.au:10238/6199 2023-05-15T13:36:16+02:00 21Ne, 10Be and 26Al cosmogenic burial ages of near-surface eolian sand from the Packard Dune field, McMurdo Dry Valleys, Antarctica. Fink, D Augustinus, P Rhodes, E Bristow, C Balco, G 2015-09-07 http://apo.ansto.gov.au/dspace/handle/10238/6199 http://inqua2015.jp/program/INQUA2015program.pdf en eng 19th International Union for Quaternary Science Congress Fink, D., Augustinus, P., Rhodes, E., Bristow, C., & Balco, G. (2015). 21Ne, 10Be and 26Al cosmogenic burial ages of near-surface eolian sand from the Packard Dune field, McMurdo Dry Valleys, Antarctica. Paper presented at the 19th INQUA Congress Nagoya, Japan http://inqua2015.jp/program/INQUA2015program.pdf http://apo.ansto.gov.au/dspace/handle/10238/6199 Quartz Deposition Sand Antarctica Ice wind Conference Poster 2015 ftansto 2020-04-06T22:28:53Z The McMurdo Dry Valleys, Antarctica, have been ice-free for at least 10 Ma. In Victoria Valley, the largest of the Dry Valleys, permafrosted yet still actively migrating dune-fields, occupy an area of 8 km2 with dune thicknesses varying from 5 to 70 meters. High-resolution ground penetrating radar (GPR) imaging of selected dunes reveal numerous unconformities and complex stratigraphy inferring cycles of sand accretion and deflation from westerly katabatic winter winds sourced from the East Antarctic Ice Sheet and anabatic summer winds sourced from the Ross Sea. Samples above permafrost depth were taken for OSL and cosmogenic 26Al/10Be burial ages. OSL ages from shallow (<1m) pits range from modern to 1.3ka suggesting that deposition/reworking of the dunes is ongoing and their present configuration is a late Holocene feature. The same 7 samples gave a mean 26Al/10Be = 4.53 +/- 5% with an average apparent continuous 10Be surface exposure age of 525 +/- 25 ka surprisingly indicating a common pre-history independent of depth. Correcting for minor post-burial production based on OSL ages, the minimum (integrated) burial period for these sand grains is 0.51+/- 0.12 Ma which represents the burial age at the time of arrival at the dune. A possible explanation is that this common burial signal reflects recycling episodes of exposure, deposition, burial and deflation, sufficiently frequent to move all grains towards a common pre-dune deposition history. However, it is unclear over what length of time this processes has been active and fraction of time the sand has been buried. Consequently we also analysed purified quartz aliquots of the same samples for a third and stable nuclide, 21Ne, to determine the total surface and burial exposure periods. Using the 21Ne/10Be system we obtain burial ages of 1.10 +/- 0.10 Ma. Further coring below permafrost is planned for austral summer 2015. © Copyright, 2015 XIX INQUA Congress LOC. Other/Unknown Material Antarc* Antarctic Antarctica Ice Ice Sheet McMurdo Dry Valleys permafrost Ross Sea Australian Nuclear Science and Technology Organisation: ANSTO Publications Online Antarctic Austral Ross Sea McMurdo Dry Valleys East Antarctic Ice Sheet Victoria Valley ENVELOPE(162.000,162.000,-77.383,-77.383) |
institution |
Open Polar |
collection |
Australian Nuclear Science and Technology Organisation: ANSTO Publications Online |
op_collection_id |
ftansto |
language |
English |
topic |
Quartz Deposition Sand Antarctica Ice wind |
spellingShingle |
Quartz Deposition Sand Antarctica Ice wind Fink, D Augustinus, P Rhodes, E Bristow, C Balco, G 21Ne, 10Be and 26Al cosmogenic burial ages of near-surface eolian sand from the Packard Dune field, McMurdo Dry Valleys, Antarctica. |
topic_facet |
Quartz Deposition Sand Antarctica Ice wind |
description |
The McMurdo Dry Valleys, Antarctica, have been ice-free for at least 10 Ma. In Victoria Valley, the largest of the Dry Valleys, permafrosted yet still actively migrating dune-fields, occupy an area of 8 km2 with dune thicknesses varying from 5 to 70 meters. High-resolution ground penetrating radar (GPR) imaging of selected dunes reveal numerous unconformities and complex stratigraphy inferring cycles of sand accretion and deflation from westerly katabatic winter winds sourced from the East Antarctic Ice Sheet and anabatic summer winds sourced from the Ross Sea. Samples above permafrost depth were taken for OSL and cosmogenic 26Al/10Be burial ages. OSL ages from shallow (<1m) pits range from modern to 1.3ka suggesting that deposition/reworking of the dunes is ongoing and their present configuration is a late Holocene feature. The same 7 samples gave a mean 26Al/10Be = 4.53 +/- 5% with an average apparent continuous 10Be surface exposure age of 525 +/- 25 ka surprisingly indicating a common pre-history independent of depth. Correcting for minor post-burial production based on OSL ages, the minimum (integrated) burial period for these sand grains is 0.51+/- 0.12 Ma which represents the burial age at the time of arrival at the dune. A possible explanation is that this common burial signal reflects recycling episodes of exposure, deposition, burial and deflation, sufficiently frequent to move all grains towards a common pre-dune deposition history. However, it is unclear over what length of time this processes has been active and fraction of time the sand has been buried. Consequently we also analysed purified quartz aliquots of the same samples for a third and stable nuclide, 21Ne, to determine the total surface and burial exposure periods. Using the 21Ne/10Be system we obtain burial ages of 1.10 +/- 0.10 Ma. Further coring below permafrost is planned for austral summer 2015. © Copyright, 2015 XIX INQUA Congress LOC. |
format |
Other/Unknown Material |
author |
Fink, D Augustinus, P Rhodes, E Bristow, C Balco, G |
author_facet |
Fink, D Augustinus, P Rhodes, E Bristow, C Balco, G |
author_sort |
Fink, D |
title |
21Ne, 10Be and 26Al cosmogenic burial ages of near-surface eolian sand from the Packard Dune field, McMurdo Dry Valleys, Antarctica. |
title_short |
21Ne, 10Be and 26Al cosmogenic burial ages of near-surface eolian sand from the Packard Dune field, McMurdo Dry Valleys, Antarctica. |
title_full |
21Ne, 10Be and 26Al cosmogenic burial ages of near-surface eolian sand from the Packard Dune field, McMurdo Dry Valleys, Antarctica. |
title_fullStr |
21Ne, 10Be and 26Al cosmogenic burial ages of near-surface eolian sand from the Packard Dune field, McMurdo Dry Valleys, Antarctica. |
title_full_unstemmed |
21Ne, 10Be and 26Al cosmogenic burial ages of near-surface eolian sand from the Packard Dune field, McMurdo Dry Valleys, Antarctica. |
title_sort |
21ne, 10be and 26al cosmogenic burial ages of near-surface eolian sand from the packard dune field, mcmurdo dry valleys, antarctica. |
publisher |
19th International Union for Quaternary Science Congress |
publishDate |
2015 |
url |
http://apo.ansto.gov.au/dspace/handle/10238/6199 http://inqua2015.jp/program/INQUA2015program.pdf |
long_lat |
ENVELOPE(162.000,162.000,-77.383,-77.383) |
geographic |
Antarctic Austral Ross Sea McMurdo Dry Valleys East Antarctic Ice Sheet Victoria Valley |
geographic_facet |
Antarctic Austral Ross Sea McMurdo Dry Valleys East Antarctic Ice Sheet Victoria Valley |
genre |
Antarc* Antarctic Antarctica Ice Ice Sheet McMurdo Dry Valleys permafrost Ross Sea |
genre_facet |
Antarc* Antarctic Antarctica Ice Ice Sheet McMurdo Dry Valleys permafrost Ross Sea |
op_relation |
Fink, D., Augustinus, P., Rhodes, E., Bristow, C., & Balco, G. (2015). 21Ne, 10Be and 26Al cosmogenic burial ages of near-surface eolian sand from the Packard Dune field, McMurdo Dry Valleys, Antarctica. Paper presented at the 19th INQUA Congress Nagoya, Japan http://inqua2015.jp/program/INQUA2015program.pdf http://apo.ansto.gov.au/dspace/handle/10238/6199 |
_version_ |
1766076191206277120 |