How do sea-level curves influence modeled marine terrace sequences?
(IF 4.12; Q1) International audience Sequences of uplifted marine terraces are widespread and reflect the interaction between climatic and tectonic processes at multiple scales, yet their analysis is typically biased by the chosen sea-level (SL) curve. Here we explore the influence of Quaternary SL...
Published in: | Quaternary Science Reviews |
---|---|
Main Authors: | , , , , , , , , |
Other Authors: | , , , , , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
HAL CCSD
2020
|
Subjects: | |
Online Access: | https://insu.hal.science/insu-02436871 https://insu.hal.science/insu-02436871v1/document https://insu.hal.science/insu-02436871v1/file/preprint_gdegelder_slcurvesterraces.pdf https://doi.org/10.1016/j.quascirev.2019.106132 |
id |
ftanrparis:oai:HAL:insu-02436871v1 |
---|---|
record_format |
openpolar |
institution |
Open Polar |
collection |
Portail HAL-ANR (Agence Nationale de la Recherche) |
op_collection_id |
ftanrparis |
language |
English |
topic |
Corinth rift Quaternary Sea-level changes Global Coastal geomorphology Marine terraces Landscape evolution models [SDU.STU.TE]Sciences of the Universe [physics]/Earth Sciences/Tectonics [SDU.STU.GM]Sciences of the Universe [physics]/Earth Sciences/Geomorphology |
spellingShingle |
Corinth rift Quaternary Sea-level changes Global Coastal geomorphology Marine terraces Landscape evolution models [SDU.STU.TE]Sciences of the Universe [physics]/Earth Sciences/Tectonics [SDU.STU.GM]Sciences of the Universe [physics]/Earth Sciences/Geomorphology de Gelder, Gino Jara-Muñoz, Julius Melnick, Daniel Fernández-Blanco, David Rouby, Hélène Pedoja, Kevin Husson, Laurent Armijo, Rolando Lacassin, Robin How do sea-level curves influence modeled marine terrace sequences? |
topic_facet |
Corinth rift Quaternary Sea-level changes Global Coastal geomorphology Marine terraces Landscape evolution models [SDU.STU.TE]Sciences of the Universe [physics]/Earth Sciences/Tectonics [SDU.STU.GM]Sciences of the Universe [physics]/Earth Sciences/Geomorphology |
description |
(IF 4.12; Q1) International audience Sequences of uplifted marine terraces are widespread and reflect the interaction between climatic and tectonic processes at multiple scales, yet their analysis is typically biased by the chosen sea-level (SL) curve. Here we explore the influence of Quaternary SL curves on the geometry of marine terrace sequences using landscape evolution models (LEMs). First, we modeled the young, rapidly uplifting sequence at Xylokastro (Corinth Rift; <240 ka; ∼1.5 mm/yr), which allowed us to constrain terrace ages, model parameters, and best-fitting SL curves. Models that better reproduced the terraced topography used a glacio-isostatically adjusted SL curve based on coral data (for ∼125 ka), and a eustatic SL curve based on ice-sheet models (for ∼240 ka). Second, we explored the opposite end-member of older, slower uplifting sequences (2.6 Ma; 0.1–0.2 mm/yr). We find that cliff diffusion is important to model terrace sequence morphology, and that a hydraulic-model based SL curve reproduced observed terrace morphologies best. Third, we modeled the effect of SL noise with various amplitudes and wavelengths on our interpretations, finding that younger, faster uplifting sequences are less noise-sensitive and thus generally more promising for LEM studies. Our results emphasize the importance of testing a variety of SL-curves within marine terrace studies, and highlight that accurate modeling through LEMs may provide valuable insight on climatic and tectonic forcing to Quaternary coastal evolution. |
author2 |
Institut de Physique du Globe de Paris (IPGP) Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS) Institute of Earth and Environmental Science Potsdam University of Potsdam = Universität Potsdam Morphodynamique Continentale et Côtière (M2C) Université de Caen Normandie (UNICAEN) Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rouen Normandie (UNIROUEN) Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS) Institut des Sciences de la Terre (ISTerre) Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel-Observatoire des Sciences de l'Univers de Grenoble (Fédération OSUG)-Université Grenoble Alpes (UGA) Laboratoire de tectonique, mécanique de la lithosphère (LTML (UMR_7578)) Université Paris Diderot - Paris 7 (UPD7)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS) ANR-18-IDEX-0001,Université de Paris,Université de Paris(2018) |
format |
Article in Journal/Newspaper |
author |
de Gelder, Gino Jara-Muñoz, Julius Melnick, Daniel Fernández-Blanco, David Rouby, Hélène Pedoja, Kevin Husson, Laurent Armijo, Rolando Lacassin, Robin |
author_facet |
de Gelder, Gino Jara-Muñoz, Julius Melnick, Daniel Fernández-Blanco, David Rouby, Hélène Pedoja, Kevin Husson, Laurent Armijo, Rolando Lacassin, Robin |
author_sort |
de Gelder, Gino |
title |
How do sea-level curves influence modeled marine terrace sequences? |
title_short |
How do sea-level curves influence modeled marine terrace sequences? |
title_full |
How do sea-level curves influence modeled marine terrace sequences? |
title_fullStr |
How do sea-level curves influence modeled marine terrace sequences? |
title_full_unstemmed |
How do sea-level curves influence modeled marine terrace sequences? |
title_sort |
how do sea-level curves influence modeled marine terrace sequences? |
publisher |
HAL CCSD |
publishDate |
2020 |
url |
https://insu.hal.science/insu-02436871 https://insu.hal.science/insu-02436871v1/document https://insu.hal.science/insu-02436871v1/file/preprint_gdegelder_slcurvesterraces.pdf https://doi.org/10.1016/j.quascirev.2019.106132 |
genre |
Ice Sheet |
genre_facet |
Ice Sheet |
op_source |
ISSN: 0277-3791 EISSN: 1873-457X Quaternary Science Reviews https://insu.hal.science/insu-02436871 Quaternary Science Reviews, 2020, 229, pp.106132. ⟨10.1016/j.quascirev.2019.106132⟩ |
op_relation |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.quascirev.2019.106132 doi:10.1016/j.quascirev.2019.106132 |
op_rights |
info:eu-repo/semantics/OpenAccess |
op_doi |
https://doi.org/10.1016/j.quascirev.2019.106132 |
container_title |
Quaternary Science Reviews |
container_volume |
229 |
container_start_page |
106132 |
_version_ |
1813449016992595968 |
spelling |
ftanrparis:oai:HAL:insu-02436871v1 2024-10-20T14:09:29+00:00 How do sea-level curves influence modeled marine terrace sequences? de Gelder, Gino Jara-Muñoz, Julius Melnick, Daniel Fernández-Blanco, David Rouby, Hélène Pedoja, Kevin Husson, Laurent Armijo, Rolando Lacassin, Robin Institut de Physique du Globe de Paris (IPGP) Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS) Institute of Earth and Environmental Science Potsdam University of Potsdam = Universität Potsdam Morphodynamique Continentale et Côtière (M2C) Université de Caen Normandie (UNICAEN) Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rouen Normandie (UNIROUEN) Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS) Institut des Sciences de la Terre (ISTerre) Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel-Observatoire des Sciences de l'Univers de Grenoble (Fédération OSUG)-Université Grenoble Alpes (UGA) Laboratoire de tectonique, mécanique de la lithosphère (LTML (UMR_7578)) Université Paris Diderot - Paris 7 (UPD7)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS) ANR-18-IDEX-0001,Université de Paris,Université de Paris(2018) 2020-02-01 https://insu.hal.science/insu-02436871 https://insu.hal.science/insu-02436871v1/document https://insu.hal.science/insu-02436871v1/file/preprint_gdegelder_slcurvesterraces.pdf https://doi.org/10.1016/j.quascirev.2019.106132 en eng HAL CCSD Elsevier info:eu-repo/semantics/altIdentifier/doi/10.1016/j.quascirev.2019.106132 doi:10.1016/j.quascirev.2019.106132 info:eu-repo/semantics/OpenAccess ISSN: 0277-3791 EISSN: 1873-457X Quaternary Science Reviews https://insu.hal.science/insu-02436871 Quaternary Science Reviews, 2020, 229, pp.106132. ⟨10.1016/j.quascirev.2019.106132⟩ Corinth rift Quaternary Sea-level changes Global Coastal geomorphology Marine terraces Landscape evolution models [SDU.STU.TE]Sciences of the Universe [physics]/Earth Sciences/Tectonics [SDU.STU.GM]Sciences of the Universe [physics]/Earth Sciences/Geomorphology info:eu-repo/semantics/article Journal articles 2020 ftanrparis https://doi.org/10.1016/j.quascirev.2019.106132 2024-09-26T14:18:42Z (IF 4.12; Q1) International audience Sequences of uplifted marine terraces are widespread and reflect the interaction between climatic and tectonic processes at multiple scales, yet their analysis is typically biased by the chosen sea-level (SL) curve. Here we explore the influence of Quaternary SL curves on the geometry of marine terrace sequences using landscape evolution models (LEMs). First, we modeled the young, rapidly uplifting sequence at Xylokastro (Corinth Rift; <240 ka; ∼1.5 mm/yr), which allowed us to constrain terrace ages, model parameters, and best-fitting SL curves. Models that better reproduced the terraced topography used a glacio-isostatically adjusted SL curve based on coral data (for ∼125 ka), and a eustatic SL curve based on ice-sheet models (for ∼240 ka). Second, we explored the opposite end-member of older, slower uplifting sequences (2.6 Ma; 0.1–0.2 mm/yr). We find that cliff diffusion is important to model terrace sequence morphology, and that a hydraulic-model based SL curve reproduced observed terrace morphologies best. Third, we modeled the effect of SL noise with various amplitudes and wavelengths on our interpretations, finding that younger, faster uplifting sequences are less noise-sensitive and thus generally more promising for LEM studies. Our results emphasize the importance of testing a variety of SL-curves within marine terrace studies, and highlight that accurate modeling through LEMs may provide valuable insight on climatic and tectonic forcing to Quaternary coastal evolution. Article in Journal/Newspaper Ice Sheet Portail HAL-ANR (Agence Nationale de la Recherche) Quaternary Science Reviews 229 106132 |