Numerical simulations of the latest caldera-forming eruption of Okmok volcano, Alaska

The latest caldera-forming eruption of Okmok volcano, Alaska, had a global atmospheric impact with tephra deposits found in distant Arctic ice cores and a sulfate signal found in Antarctic ice cores. The associated large-scale climate cooling was driven by the amount of sulfur injected into the stra...

Full description

Bibliographic Details
Main Authors: Burgisser, Alain, Peccia, Ally, Plank, Terry, Moussallam, Yves
Other Authors: Institut des Sciences de la Terre (ISTerre), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel-Université Grenoble Alpes (UGA), Lamont-Doherty Earth Observatory (LDEO), Columbia University New York, The computations presented in this paper were performed using the GRICAD infrastructure (gricad.univ-grenoble-alpes.fr), which is supported by Grenoble research communities., ANR-19-CE31-0007,MECAMUSH,Cinématique et dynamique des mush magmatiques: implications pour l'extraction et le transfert des magmas dans la croûte terrestre(2019)
Format: Report
Language:English
Published: HAL CCSD 2023
Subjects:
Online Access:https://hal.science/hal-04273555
https://hal.science/hal-04273555/document
https://hal.science/hal-04273555/file/Burgisser-arxiv.pdf
https://doi.org/10.48550/arXiv.2310.05516
id ftanrparis:oai:HAL:hal-04273555v1
record_format openpolar
spelling ftanrparis:oai:HAL:hal-04273555v1 2024-06-09T07:39:58+00:00 Numerical simulations of the latest caldera-forming eruption of Okmok volcano, Alaska Burgisser, Alain Peccia, Ally Plank, Terry Moussallam, Yves Institut des Sciences de la Terre (ISTerre) Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel-Université Grenoble Alpes (UGA) Lamont-Doherty Earth Observatory (LDEO) Columbia University New York The computations presented in this paper were performed using the GRICAD infrastructure (gricad.univ-grenoble-alpes.fr), which is supported by Grenoble research communities. ANR-19-CE31-0007,MECAMUSH,Cinématique et dynamique des mush magmatiques: implications pour l'extraction et le transfert des magmas dans la croûte terrestre(2019) 2023-11-07 https://hal.science/hal-04273555 https://hal.science/hal-04273555/document https://hal.science/hal-04273555/file/Burgisser-arxiv.pdf https://doi.org/10.48550/arXiv.2310.05516 en eng HAL CCSD info:eu-repo/semantics/altIdentifier/doi/10.48550/arXiv.2310.05516 hal-04273555 https://hal.science/hal-04273555 https://hal.science/hal-04273555/document https://hal.science/hal-04273555/file/Burgisser-arxiv.pdf doi:10.48550/arXiv.2310.05516 http://creativecommons.org/licenses/by-nd/ info:eu-repo/semantics/OpenAccess https://hal.science/hal-04273555 2023 pyroclastic density current two-phase flow sulfur stratosphere [SDU]Sciences of the Universe [physics] info:eu-repo/semantics/preprint Preprints, Working Papers, . 2023 ftanrparis https://doi.org/10.48550/arXiv.2310.05516 2024-05-16T14:35:37Z The latest caldera-forming eruption of Okmok volcano, Alaska, had a global atmospheric impact with tephra deposits found in distant Arctic ice cores and a sulfate signal found in Antarctic ice cores. The associated large-scale climate cooling was driven by the amount of sulfur injected into the stratosphere during the climactic phase of the eruption. This phase was dominated by pyroclastic density currents, which have complex emplacement dynamics precluding direct estimates of the sulfur stratospheric load. We simulated the dynamics of this climactic phase with the two-phase flow model MFIX-TFM under axisymmetric conditions with several combinations of injection mass flux, emission duration, and topography. Results suggest that a steady mass flux of $8.6-28\times 10^9$ kg/s is consistent with field observations. Stratospheric injections occur in pulses issued from 1) the central plume initially rising above the caldera center, 2) successive co-ignimbrite clouds caused by the encounter of the pyroclastic density currents with topography, and 3) the buoyant lift-off of dilute parts of the currents at the end of the eruption. Overall, 2.5 to 25% of the emitted volcanic gas reaches the stratosphere if the mass flux at the vent is steady. A fluctuating emission rate or an efficient final lift-off due to seawater interaction were unlikely to have increased this loading. Combined with petrological estimates of the degassed S, our results suggest that the eruption emitted 46.5-60.4 Tg S into the troposphere and injected 1.6-15.5 Tg S into the stratosphere, which controlled the atmospheric forcing and the subsequent climate response. Report Antarc* Antarctic Arctic Alaska Portail HAL-ANR (Agence Nationale de la Recherche) Antarctic Arctic
institution Open Polar
collection Portail HAL-ANR (Agence Nationale de la Recherche)
op_collection_id ftanrparis
language English
topic pyroclastic density current
two-phase flow
sulfur
stratosphere
[SDU]Sciences of the Universe [physics]
spellingShingle pyroclastic density current
two-phase flow
sulfur
stratosphere
[SDU]Sciences of the Universe [physics]
Burgisser, Alain
Peccia, Ally
Plank, Terry
Moussallam, Yves
Numerical simulations of the latest caldera-forming eruption of Okmok volcano, Alaska
topic_facet pyroclastic density current
two-phase flow
sulfur
stratosphere
[SDU]Sciences of the Universe [physics]
description The latest caldera-forming eruption of Okmok volcano, Alaska, had a global atmospheric impact with tephra deposits found in distant Arctic ice cores and a sulfate signal found in Antarctic ice cores. The associated large-scale climate cooling was driven by the amount of sulfur injected into the stratosphere during the climactic phase of the eruption. This phase was dominated by pyroclastic density currents, which have complex emplacement dynamics precluding direct estimates of the sulfur stratospheric load. We simulated the dynamics of this climactic phase with the two-phase flow model MFIX-TFM under axisymmetric conditions with several combinations of injection mass flux, emission duration, and topography. Results suggest that a steady mass flux of $8.6-28\times 10^9$ kg/s is consistent with field observations. Stratospheric injections occur in pulses issued from 1) the central plume initially rising above the caldera center, 2) successive co-ignimbrite clouds caused by the encounter of the pyroclastic density currents with topography, and 3) the buoyant lift-off of dilute parts of the currents at the end of the eruption. Overall, 2.5 to 25% of the emitted volcanic gas reaches the stratosphere if the mass flux at the vent is steady. A fluctuating emission rate or an efficient final lift-off due to seawater interaction were unlikely to have increased this loading. Combined with petrological estimates of the degassed S, our results suggest that the eruption emitted 46.5-60.4 Tg S into the troposphere and injected 1.6-15.5 Tg S into the stratosphere, which controlled the atmospheric forcing and the subsequent climate response.
author2 Institut des Sciences de la Terre (ISTerre)
Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel-Université Grenoble Alpes (UGA)
Lamont-Doherty Earth Observatory (LDEO)
Columbia University New York
The computations presented in this paper were performed using the GRICAD infrastructure (gricad.univ-grenoble-alpes.fr), which is supported by Grenoble research communities.
ANR-19-CE31-0007,MECAMUSH,Cinématique et dynamique des mush magmatiques: implications pour l'extraction et le transfert des magmas dans la croûte terrestre(2019)
format Report
author Burgisser, Alain
Peccia, Ally
Plank, Terry
Moussallam, Yves
author_facet Burgisser, Alain
Peccia, Ally
Plank, Terry
Moussallam, Yves
author_sort Burgisser, Alain
title Numerical simulations of the latest caldera-forming eruption of Okmok volcano, Alaska
title_short Numerical simulations of the latest caldera-forming eruption of Okmok volcano, Alaska
title_full Numerical simulations of the latest caldera-forming eruption of Okmok volcano, Alaska
title_fullStr Numerical simulations of the latest caldera-forming eruption of Okmok volcano, Alaska
title_full_unstemmed Numerical simulations of the latest caldera-forming eruption of Okmok volcano, Alaska
title_sort numerical simulations of the latest caldera-forming eruption of okmok volcano, alaska
publisher HAL CCSD
publishDate 2023
url https://hal.science/hal-04273555
https://hal.science/hal-04273555/document
https://hal.science/hal-04273555/file/Burgisser-arxiv.pdf
https://doi.org/10.48550/arXiv.2310.05516
geographic Antarctic
Arctic
geographic_facet Antarctic
Arctic
genre Antarc*
Antarctic
Arctic
Alaska
genre_facet Antarc*
Antarctic
Arctic
Alaska
op_source https://hal.science/hal-04273555
2023
op_relation info:eu-repo/semantics/altIdentifier/doi/10.48550/arXiv.2310.05516
hal-04273555
https://hal.science/hal-04273555
https://hal.science/hal-04273555/document
https://hal.science/hal-04273555/file/Burgisser-arxiv.pdf
doi:10.48550/arXiv.2310.05516
op_rights http://creativecommons.org/licenses/by-nd/
info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.48550/arXiv.2310.05516
_version_ 1801383461559205888