A statistical method to model non-stationarity in precipitation records changes

International audience In the context of climate change, assessing how likely a particular change or event has been caused by human influence is important for mitigation and adaptation policies. In this work we propose an extreme event attribution (EEA) methodology to analyze yearly maxima records,...

Full description

Bibliographic Details
Main Authors: Gonzalez, Paula, Naveau, Philippe, Thao, Soulivanh, Worms, Julien
Other Authors: Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Extrèmes : Statistiques, Impacts et Régionalisation (ESTIMR), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Laboratoire de Mathématiques de Versailles (LMV), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), FRAISE-LEFE/INSU, 80 PRIME CNRS-INSU, ANR-20-CE40-0025,T-REX,nouveaux challenges pour la prédiction des extremes et sa validation(2020), ANR-19-CE46-0011,MeLODy,Bridging geohysics and MachinE Learning for the modeling, simulation and reconstruction of Ocean DYnamics(2019), European Project: 101003469,XAIDA
Format: Report
Language:English
Published: HAL CCSD 2023
Subjects:
Online Access:https://hal.science/hal-04006516
https://hal.science/hal-04006516/document
https://hal.science/hal-04006516/file/Paula_article_Hal.pdf
Description
Summary:International audience In the context of climate change, assessing how likely a particular change or event has been caused by human influence is important for mitigation and adaptation policies. In this work we propose an extreme event attribution (EEA) methodology to analyze yearly maxima records, key indicators of climate change that spark media attention and research in the EEA community. Although they deserve a specific statistical treatment, algorithms tailored to record analysis are lacking. This is particularly true in a non-stationarity context. This work aims at filling this methodological gap by focusing on records in transient climate simulations. We apply our methodology to study records of yearly maxima of daily precipitation issued from numerical climate model IPSL-CM6A-LR. Illustrating our approach with decadal records, we detect in 2023 a clear human induced signal in half of the globe, with probability mostly increasing, but decreasing in the south and north Atlantic oceans