Evolution of Ocean circulation in the North Atlantic Ocean during the Miocene: impact of the Greenland ice sheet and the Eastern Tethys Seaway
International audience The Atlantic Meridional Overturning Circulation (AMOC) is today the central feature of the Global ocean circulation (Talley, 2013). It is dominated by two overturning cells usually referred to as the Antarctic Bottom Water (AABW) and the North Atlantic Deep Water (NADW). The N...
Published in: | Paleoceanography and Paleoclimatology |
---|---|
Main Authors: | , , , , |
Other Authors: | , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
HAL CCSD
2022
|
Subjects: | |
Online Access: | https://hal.science/hal-03763405 https://hal.science/hal-03763405/document https://hal.science/hal-03763405/file/Paleoceanog%20and%20Paleoclimatol%20-%202022%20-%20Pillot%20-%20Evolution%20of%20Ocean%20Circulation%20in%20the%20North%20Atlantic%20Ocean%20During%20the.pdf https://doi.org/10.1029/2022pa004415 |
id |
ftanrparis:oai:HAL:hal-03763405v1 |
---|---|
record_format |
openpolar |
institution |
Open Polar |
collection |
Portail HAL-ANR (Agence Nationale de la Recherche) |
op_collection_id |
ftanrparis |
language |
English |
topic |
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmosphere [SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces environment |
spellingShingle |
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmosphere [SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces environment Pillot, Q. Donnadieu, Y. Sarr, A.‐C. Ladant, J.‐B. Suchéras-Marx, B. Evolution of Ocean circulation in the North Atlantic Ocean during the Miocene: impact of the Greenland ice sheet and the Eastern Tethys Seaway |
topic_facet |
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmosphere [SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces environment |
description |
International audience The Atlantic Meridional Overturning Circulation (AMOC) is today the central feature of the Global ocean circulation (Talley, 2013). It is dominated by two overturning cells usually referred to as the Antarctic Bottom Water (AABW) and the North Atlantic Deep Water (NADW). The NADW forms mainly in the Norwegian Sea by winter open-ocean cooling of salt-rich water advected northward by the Gulf Stream. The cooling increases the density of surface waters, which results in vertical convection and the formation of deep water. The newly formed deep and dense waters flow southward to the Southern Ocean, where they are upwelled under the action of the Antarctic Circumpolar Current (ACC). They are then dragged either into the AABW overturning branch and redistributed in the Pacific and Indian basins via the ACC or into the formation area of the Antarctic Intermediate Water (AAIW), thereby flowing northward as (sub)surface currents and closing the AMOC cell (Talley, 2013). The structure of the modern AMOC results from the particular configuration of the Atlantic basin geometry with a closed Central American Seaway and an open Drake Passage (Ferreira et al., 2018). During Cenozoic times (66-0 Ma) and, in particular, the Miocene period (23-5 Ma), the physical structure of the AMOC was probably different compared to the present-day because the configuration of major gateways and submarine topographic barriers in the Atlantic and Pacific basins differ substantially (Hutchinson et al., 2019). From the early Miocene (∼23 Ma) to today, these changes include the deepening of the Greenland-Scotland Ridge (Stärz et al., 2017), the opening of Fram Strait (Ehlers & Jokat, 2013) and Bering Strait (Gladenkov & Gladenkov, 2004) in the northern high latitudes; the closure of Central American Seaway (Montes et al., 2015) and Eastern Tethys Seaway (ETS, Bialik et al., 2019) in the tropics; and the potential narrowing of Drake Passage (Lagabrielle et al., 2009) in the southern high latitudes. Apart from those ... |
author2 |
Centre Européen de Recherche et d'Enseignement des Géosciences de l'Environnement (CEREGE) Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE) Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA) Modélisation du climat (CLIM) Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) ANR-16-CE31-0020,AMOR,Reconstruction modèle-données des climats du Cénozoique(2016) ANR-20-CE49-0002,MioCarb,La transition Mio-Pliocene : mise en place du cycle du carbone moderne(2020) |
format |
Article in Journal/Newspaper |
author |
Pillot, Q. Donnadieu, Y. Sarr, A.‐C. Ladant, J.‐B. Suchéras-Marx, B. |
author_facet |
Pillot, Q. Donnadieu, Y. Sarr, A.‐C. Ladant, J.‐B. Suchéras-Marx, B. |
author_sort |
Pillot, Q. |
title |
Evolution of Ocean circulation in the North Atlantic Ocean during the Miocene: impact of the Greenland ice sheet and the Eastern Tethys Seaway |
title_short |
Evolution of Ocean circulation in the North Atlantic Ocean during the Miocene: impact of the Greenland ice sheet and the Eastern Tethys Seaway |
title_full |
Evolution of Ocean circulation in the North Atlantic Ocean during the Miocene: impact of the Greenland ice sheet and the Eastern Tethys Seaway |
title_fullStr |
Evolution of Ocean circulation in the North Atlantic Ocean during the Miocene: impact of the Greenland ice sheet and the Eastern Tethys Seaway |
title_full_unstemmed |
Evolution of Ocean circulation in the North Atlantic Ocean during the Miocene: impact of the Greenland ice sheet and the Eastern Tethys Seaway |
title_sort |
evolution of ocean circulation in the north atlantic ocean during the miocene: impact of the greenland ice sheet and the eastern tethys seaway |
publisher |
HAL CCSD |
publishDate |
2022 |
url |
https://hal.science/hal-03763405 https://hal.science/hal-03763405/document https://hal.science/hal-03763405/file/Paleoceanog%20and%20Paleoclimatol%20-%202022%20-%20Pillot%20-%20Evolution%20of%20Ocean%20Circulation%20in%20the%20North%20Atlantic%20Ocean%20During%20the.pdf https://doi.org/10.1029/2022pa004415 |
long_lat |
ENVELOPE(-62.050,-62.050,-64.600,-64.600) |
geographic |
Antarctic Southern Ocean The Antarctic Norwegian Sea Drake Passage Bering Strait Greenland Pacific Indian Ferreira |
geographic_facet |
Antarctic Southern Ocean The Antarctic Norwegian Sea Drake Passage Bering Strait Greenland Pacific Indian Ferreira |
genre |
Antarc* Antarctic Bering Strait Drake Passage Fram Strait Greenland Greenland-Scotland Ridge Ice Sheet NADW North Atlantic Deep Water North Atlantic Norwegian Sea Southern Ocean |
genre_facet |
Antarc* Antarctic Bering Strait Drake Passage Fram Strait Greenland Greenland-Scotland Ridge Ice Sheet NADW North Atlantic Deep Water North Atlantic Norwegian Sea Southern Ocean |
op_source |
ISSN: 2572-4525 EISSN: 1944-9186 Paleoceanography and Paleoclimatology https://hal.science/hal-03763405 Paleoceanography and Paleoclimatology, 2022, 37 (8), pp.e2022PA004415. ⟨10.1029/2022pa004415⟩ |
op_relation |
info:eu-repo/semantics/altIdentifier/doi/10.1029/2022pa004415 hal-03763405 https://hal.science/hal-03763405 https://hal.science/hal-03763405/document https://hal.science/hal-03763405/file/Paleoceanog%20and%20Paleoclimatol%20-%202022%20-%20Pillot%20-%20Evolution%20of%20Ocean%20Circulation%20in%20the%20North%20Atlantic%20Ocean%20During%20the.pdf doi:10.1029/2022pa004415 WOS: 000846753500001 |
op_rights |
info:eu-repo/semantics/OpenAccess |
op_doi |
https://doi.org/10.1029/2022pa004415 |
container_title |
Paleoceanography and Paleoclimatology |
container_volume |
37 |
container_issue |
8 |
_version_ |
1811646766561361920 |
spelling |
ftanrparis:oai:HAL:hal-03763405v1 2024-09-30T14:26:25+00:00 Evolution of Ocean circulation in the North Atlantic Ocean during the Miocene: impact of the Greenland ice sheet and the Eastern Tethys Seaway Pillot, Q. Donnadieu, Y. Sarr, A.‐C. Ladant, J.‐B. Suchéras-Marx, B. Centre Européen de Recherche et d'Enseignement des Géosciences de l'Environnement (CEREGE) Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE) Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA) Modélisation du climat (CLIM) Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) ANR-16-CE31-0020,AMOR,Reconstruction modèle-données des climats du Cénozoique(2016) ANR-20-CE49-0002,MioCarb,La transition Mio-Pliocene : mise en place du cycle du carbone moderne(2020) 2022-08 https://hal.science/hal-03763405 https://hal.science/hal-03763405/document https://hal.science/hal-03763405/file/Paleoceanog%20and%20Paleoclimatol%20-%202022%20-%20Pillot%20-%20Evolution%20of%20Ocean%20Circulation%20in%20the%20North%20Atlantic%20Ocean%20During%20the.pdf https://doi.org/10.1029/2022pa004415 en eng HAL CCSD American Geophysical Union info:eu-repo/semantics/altIdentifier/doi/10.1029/2022pa004415 hal-03763405 https://hal.science/hal-03763405 https://hal.science/hal-03763405/document https://hal.science/hal-03763405/file/Paleoceanog%20and%20Paleoclimatol%20-%202022%20-%20Pillot%20-%20Evolution%20of%20Ocean%20Circulation%20in%20the%20North%20Atlantic%20Ocean%20During%20the.pdf doi:10.1029/2022pa004415 WOS: 000846753500001 info:eu-repo/semantics/OpenAccess ISSN: 2572-4525 EISSN: 1944-9186 Paleoceanography and Paleoclimatology https://hal.science/hal-03763405 Paleoceanography and Paleoclimatology, 2022, 37 (8), pp.e2022PA004415. ⟨10.1029/2022pa004415⟩ [SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmosphere [SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces environment info:eu-repo/semantics/article Journal articles 2022 ftanrparis https://doi.org/10.1029/2022pa004415 2024-09-05T00:06:58Z International audience The Atlantic Meridional Overturning Circulation (AMOC) is today the central feature of the Global ocean circulation (Talley, 2013). It is dominated by two overturning cells usually referred to as the Antarctic Bottom Water (AABW) and the North Atlantic Deep Water (NADW). The NADW forms mainly in the Norwegian Sea by winter open-ocean cooling of salt-rich water advected northward by the Gulf Stream. The cooling increases the density of surface waters, which results in vertical convection and the formation of deep water. The newly formed deep and dense waters flow southward to the Southern Ocean, where they are upwelled under the action of the Antarctic Circumpolar Current (ACC). They are then dragged either into the AABW overturning branch and redistributed in the Pacific and Indian basins via the ACC or into the formation area of the Antarctic Intermediate Water (AAIW), thereby flowing northward as (sub)surface currents and closing the AMOC cell (Talley, 2013). The structure of the modern AMOC results from the particular configuration of the Atlantic basin geometry with a closed Central American Seaway and an open Drake Passage (Ferreira et al., 2018). During Cenozoic times (66-0 Ma) and, in particular, the Miocene period (23-5 Ma), the physical structure of the AMOC was probably different compared to the present-day because the configuration of major gateways and submarine topographic barriers in the Atlantic and Pacific basins differ substantially (Hutchinson et al., 2019). From the early Miocene (∼23 Ma) to today, these changes include the deepening of the Greenland-Scotland Ridge (Stärz et al., 2017), the opening of Fram Strait (Ehlers & Jokat, 2013) and Bering Strait (Gladenkov & Gladenkov, 2004) in the northern high latitudes; the closure of Central American Seaway (Montes et al., 2015) and Eastern Tethys Seaway (ETS, Bialik et al., 2019) in the tropics; and the potential narrowing of Drake Passage (Lagabrielle et al., 2009) in the southern high latitudes. Apart from those ... Article in Journal/Newspaper Antarc* Antarctic Bering Strait Drake Passage Fram Strait Greenland Greenland-Scotland Ridge Ice Sheet NADW North Atlantic Deep Water North Atlantic Norwegian Sea Southern Ocean Portail HAL-ANR (Agence Nationale de la Recherche) Antarctic Southern Ocean The Antarctic Norwegian Sea Drake Passage Bering Strait Greenland Pacific Indian Ferreira ENVELOPE(-62.050,-62.050,-64.600,-64.600) Paleoceanography and Paleoclimatology 37 8 |