Quantification of Chaotic Intrinsic Variability of Sea‐Air CO 2 Fluxes at Interannual Timescales

International audience Chaotic intrinsic variability (CIV) emerges spontaneously from nonlinear ocean dynamics even without any atmospheric variability. Eddy-permitting numerical simulations suggest that CIV is a significant contributor to the interannual to decadal variability of physical propertie...

Full description

Bibliographic Details
Published in:Geophysical Research Letters
Main Authors: Gehlen, M., Berthet, S., Séférian, R., Ethé, Ch., H, Penduff, Thierry
Other Authors: Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Centre national de recherches météorologiques (CNRM), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS), Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS-PSL), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X), Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institut des Géosciences de l’Environnement (IGE), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), ANR-16-CE01-0014,SOBUMS,Comprendre la réponse du cycle du carbone dans l'océan austral au stress climatique(2016)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2020
Subjects:
Online Access:https://hal.science/hal-03000615
https://hal.science/hal-03000615/document
https://hal.science/hal-03000615/file/Gehlen2020.pdf
https://doi.org/10.1029/2020GL088304
id ftanrparis:oai:HAL:hal-03000615v1
record_format openpolar
institution Open Polar
collection Portail HAL-ANR (Agence Nationale de la Recherche)
op_collection_id ftanrparis
language English
topic [SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography
spellingShingle [SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography
Gehlen, M.
Berthet, S.
Séférian, R.
Ethé, Ch., H
Penduff, Thierry
Quantification of Chaotic Intrinsic Variability of Sea‐Air CO 2 Fluxes at Interannual Timescales
topic_facet [SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography
description International audience Chaotic intrinsic variability (CIV) emerges spontaneously from nonlinear ocean dynamics even without any atmospheric variability. Eddy-permitting numerical simulations suggest that CIV is a significant contributor to the interannual to decadal variability of physical properties. Here we show from an ensemble of global ocean eddy-permitting simulations that large-scale interannual CIV propagates from physical properties to sea-air CO 2 fluxes in areas of high mesoscale eddy activity (e.g., Southern Ocean and western boundary currents). In these regions and at scales larger than 500 km (~5°), CIV contributes significantly to the interannual variability of sea-air CO 2 fluxes. Between 35°S and 45°S (midlatitude Southern Ocean), CIV amounts to 23.76 TgC yr −1 or one half of the atmospherically forced variability. Locally, its contribution to the total interannual variance of sea-air CO 2 fluxes exceeds 76%. Outside eddy-active regions its contribution to total interannual variability is below 16%. Plain Language Summary Sea-air CO 2 fluxes undergo substantial regional and interannual fluctuations. These fluctuations are mostly forced by changes in large-scale atmospheric patterns, but ocean internal dynamics could also contribute to them. This study quantifies these two sources of variability and their contributions to fluctuations of sea-air CO 2 fluxes over large oceanic regions. It relies on the analyses of three ocean numerical simulations driven by the same atmospheric forcing but starting from small differences in initial conditions, and including a simplified representation of marine ecosystems. Simulations are run at a horizontal resolution allowing to model part of the effect of ocean mesoscale activity on physical and chemical tracers. We demonstrate that nonlinear oceanic processes drive fluctuations of sea-air CO 2 fluxes at interannual timescales that are inherently random. The magnitude of these fluctuations is substantial over areas of high kinetic energy and locally exceeds ...
author2 Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE)
Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
Centre national de recherches météorologiques (CNRM)
Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP)
Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)
Institut Pierre-Simon-Laplace (IPSL (FR_636))
École normale supérieure - Paris (ENS-PSL)
Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)
Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
Institut des Géosciences de l’Environnement (IGE)
Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)
ANR-16-CE01-0014,SOBUMS,Comprendre la réponse du cycle du carbone dans l'océan austral au stress climatique(2016)
format Article in Journal/Newspaper
author Gehlen, M.
Berthet, S.
Séférian, R.
Ethé, Ch., H
Penduff, Thierry
author_facet Gehlen, M.
Berthet, S.
Séférian, R.
Ethé, Ch., H
Penduff, Thierry
author_sort Gehlen, M.
title Quantification of Chaotic Intrinsic Variability of Sea‐Air CO 2 Fluxes at Interannual Timescales
title_short Quantification of Chaotic Intrinsic Variability of Sea‐Air CO 2 Fluxes at Interannual Timescales
title_full Quantification of Chaotic Intrinsic Variability of Sea‐Air CO 2 Fluxes at Interannual Timescales
title_fullStr Quantification of Chaotic Intrinsic Variability of Sea‐Air CO 2 Fluxes at Interannual Timescales
title_full_unstemmed Quantification of Chaotic Intrinsic Variability of Sea‐Air CO 2 Fluxes at Interannual Timescales
title_sort quantification of chaotic intrinsic variability of sea‐air co 2 fluxes at interannual timescales
publisher HAL CCSD
publishDate 2020
url https://hal.science/hal-03000615
https://hal.science/hal-03000615/document
https://hal.science/hal-03000615/file/Gehlen2020.pdf
https://doi.org/10.1029/2020GL088304
genre Southern Ocean
genre_facet Southern Ocean
op_source ISSN: 0094-8276
EISSN: 1944-8007
Geophysical Research Letters
https://hal.science/hal-03000615
Geophysical Research Letters, 2020, 47 (22), ⟨10.1029/2020GL088304⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1029/2020GL088304
hal-03000615
https://hal.science/hal-03000615
https://hal.science/hal-03000615/document
https://hal.science/hal-03000615/file/Gehlen2020.pdf
doi:10.1029/2020GL088304
op_rights info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.1029/2020GL088304
container_title Geophysical Research Letters
container_volume 47
container_issue 22
_version_ 1810481503016058880
spelling ftanrparis:oai:HAL:hal-03000615v1 2024-09-15T18:37:10+00:00 Quantification of Chaotic Intrinsic Variability of Sea‐Air CO 2 Fluxes at Interannual Timescales Gehlen, M. Berthet, S. Séférian, R. Ethé, Ch., H Penduff, Thierry Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE) Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA) Centre national de recherches météorologiques (CNRM) Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP) Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS) Institut Pierre-Simon-Laplace (IPSL (FR_636)) École normale supérieure - Paris (ENS-PSL) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X) Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité) Institut des Géosciences de l’Environnement (IGE) Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ) Université Grenoble Alpes (UGA) ANR-16-CE01-0014,SOBUMS,Comprendre la réponse du cycle du carbone dans l'océan austral au stress climatique(2016) 2020-11-28 https://hal.science/hal-03000615 https://hal.science/hal-03000615/document https://hal.science/hal-03000615/file/Gehlen2020.pdf https://doi.org/10.1029/2020GL088304 en eng HAL CCSD American Geophysical Union info:eu-repo/semantics/altIdentifier/doi/10.1029/2020GL088304 hal-03000615 https://hal.science/hal-03000615 https://hal.science/hal-03000615/document https://hal.science/hal-03000615/file/Gehlen2020.pdf doi:10.1029/2020GL088304 info:eu-repo/semantics/OpenAccess ISSN: 0094-8276 EISSN: 1944-8007 Geophysical Research Letters https://hal.science/hal-03000615 Geophysical Research Letters, 2020, 47 (22), ⟨10.1029/2020GL088304⟩ [SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography info:eu-repo/semantics/article Journal articles 2020 ftanrparis https://doi.org/10.1029/2020GL088304 2024-09-05T00:06:58Z International audience Chaotic intrinsic variability (CIV) emerges spontaneously from nonlinear ocean dynamics even without any atmospheric variability. Eddy-permitting numerical simulations suggest that CIV is a significant contributor to the interannual to decadal variability of physical properties. Here we show from an ensemble of global ocean eddy-permitting simulations that large-scale interannual CIV propagates from physical properties to sea-air CO 2 fluxes in areas of high mesoscale eddy activity (e.g., Southern Ocean and western boundary currents). In these regions and at scales larger than 500 km (~5°), CIV contributes significantly to the interannual variability of sea-air CO 2 fluxes. Between 35°S and 45°S (midlatitude Southern Ocean), CIV amounts to 23.76 TgC yr −1 or one half of the atmospherically forced variability. Locally, its contribution to the total interannual variance of sea-air CO 2 fluxes exceeds 76%. Outside eddy-active regions its contribution to total interannual variability is below 16%. Plain Language Summary Sea-air CO 2 fluxes undergo substantial regional and interannual fluctuations. These fluctuations are mostly forced by changes in large-scale atmospheric patterns, but ocean internal dynamics could also contribute to them. This study quantifies these two sources of variability and their contributions to fluctuations of sea-air CO 2 fluxes over large oceanic regions. It relies on the analyses of three ocean numerical simulations driven by the same atmospheric forcing but starting from small differences in initial conditions, and including a simplified representation of marine ecosystems. Simulations are run at a horizontal resolution allowing to model part of the effect of ocean mesoscale activity on physical and chemical tracers. We demonstrate that nonlinear oceanic processes drive fluctuations of sea-air CO 2 fluxes at interannual timescales that are inherently random. The magnitude of these fluctuations is substantial over areas of high kinetic energy and locally exceeds ... Article in Journal/Newspaper Southern Ocean Portail HAL-ANR (Agence Nationale de la Recherche) Geophysical Research Letters 47 22