Temperature, lithosphere-asthenosphere boundary, and heat flux beneath the Antarctic Plate inferred from seismic velocities

International audience We estimate the upper-mantle temperature of the Antarctic Plate based on the thermoelastic properties of mantle minerals and S velocities using a new 3-D shear velocity model, AN1-S [An et al., 2015, JGR]. Crustal temperatures and surface heat fluxes are then calculated from t...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research: Solid Earth
Main Authors: An, Meijan, Wiens, Douglas, Zhao, Yue, Feng, Mei, Nyblade, Andrew, Kanao, Masaki, Li, Yuansheng, Maggi, Alessia, Lévêque, Jean-Jacques
Other Authors: National Institute of Polar Research Tokyo (NiPR), Institut de physique du globe de Strasbourg (IPGS), Université de Strasbourg (UNISTRA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), ANR-07-BLAN-0147,CASE-IPY,Concordia Antarctic Seismic Experiment (International Polar Year)(2007)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2015
Subjects:
Online Access:https://hal.science/hal-01239984
https://hal.science/hal-01239984/document
https://hal.science/hal-01239984/file/2015JB011917.pdf
https://doi.org/10.1002/2015JB011917
id ftanrparis:oai:HAL:hal-01239984v1
record_format openpolar
spelling ftanrparis:oai:HAL:hal-01239984v1 2024-09-15T17:43:45+00:00 Temperature, lithosphere-asthenosphere boundary, and heat flux beneath the Antarctic Plate inferred from seismic velocities An, Meijan Wiens, Douglas Zhao, Yue Feng, Mei Nyblade, Andrew Kanao, Masaki Li, Yuansheng Maggi, Alessia Lévêque, Jean-Jacques National Institute of Polar Research Tokyo (NiPR) Institut de physique du globe de Strasbourg (IPGS) Université de Strasbourg (UNISTRA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS) ANR-07-BLAN-0147,CASE-IPY,Concordia Antarctic Seismic Experiment (International Polar Year)(2007) 2015-12 https://hal.science/hal-01239984 https://hal.science/hal-01239984/document https://hal.science/hal-01239984/file/2015JB011917.pdf https://doi.org/10.1002/2015JB011917 en eng HAL CCSD American Geophysical Union info:eu-repo/semantics/altIdentifier/doi/10.1002/2015JB011917 hal-01239984 https://hal.science/hal-01239984 https://hal.science/hal-01239984/document https://hal.science/hal-01239984/file/2015JB011917.pdf doi:10.1002/2015JB011917 http://hal.archives-ouvertes.fr/licences/copyright/ info:eu-repo/semantics/OpenAccess ISSN: 0148-0227 EISSN: 2156-2202 Journal of Geophysical Research https://hal.science/hal-01239984 Journal of Geophysical Research, 2015, ⟨10.1002/2015JB011917⟩ [SDU.STU.GP]Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph] info:eu-repo/semantics/article Journal articles 2015 ftanrparis https://doi.org/10.1002/2015JB011917 2024-07-12T11:05:12Z International audience We estimate the upper-mantle temperature of the Antarctic Plate based on the thermoelastic properties of mantle minerals and S velocities using a new 3-D shear velocity model, AN1-S [An et al., 2015, JGR]. Crustal temperatures and surface heat fluxes are then calculated from the upper-mantle temperature assuming steady-state thermal conduction. The temperature at the top of the asthenosphere beneath the oceanic region and West Antarctica is higher than the dry mantle solidus, indicating the presence of melt. From the temperature values, we generate depth maps of the lithosphere–asthenosphere boundary and the Curie-temperature isotherm. The maps show that East Antarctica has a thick lithosphere similar to that of other stable cratons, with the thickest lithosphere (~250 km) between Domes A and C. The thin crust and lithosphere beneath West Antarctica are similar to those of modern subduction-related rift systems in East Asia. A cold region beneath the Antarctic Peninsula is similar in spatial extent to that of a flat-subducted slab beneath the southern Andes, indicating a possible remnant of the Phoenix Plate, which was subducted prior to 10 Ma. The oceanic lithosphere generally thickens with increasing age, and the age–thickness correlation depends on the spreading rate of the ridge that formed the lithosphere. Significant flattening of the age–thickness curves is not observed for the mature oceanic lithosphere of the Antarctic Plate. Article in Journal/Newspaper Antarc* Antarctic Antarctic Peninsula Antarctica East Antarctica West Antarctica Portail HAL-ANR (Agence Nationale de la Recherche) Journal of Geophysical Research: Solid Earth 120 12 8720 8742
institution Open Polar
collection Portail HAL-ANR (Agence Nationale de la Recherche)
op_collection_id ftanrparis
language English
topic [SDU.STU.GP]Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph]
spellingShingle [SDU.STU.GP]Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph]
An, Meijan
Wiens, Douglas
Zhao, Yue
Feng, Mei
Nyblade, Andrew
Kanao, Masaki
Li, Yuansheng
Maggi, Alessia
Lévêque, Jean-Jacques
Temperature, lithosphere-asthenosphere boundary, and heat flux beneath the Antarctic Plate inferred from seismic velocities
topic_facet [SDU.STU.GP]Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph]
description International audience We estimate the upper-mantle temperature of the Antarctic Plate based on the thermoelastic properties of mantle minerals and S velocities using a new 3-D shear velocity model, AN1-S [An et al., 2015, JGR]. Crustal temperatures and surface heat fluxes are then calculated from the upper-mantle temperature assuming steady-state thermal conduction. The temperature at the top of the asthenosphere beneath the oceanic region and West Antarctica is higher than the dry mantle solidus, indicating the presence of melt. From the temperature values, we generate depth maps of the lithosphere–asthenosphere boundary and the Curie-temperature isotherm. The maps show that East Antarctica has a thick lithosphere similar to that of other stable cratons, with the thickest lithosphere (~250 km) between Domes A and C. The thin crust and lithosphere beneath West Antarctica are similar to those of modern subduction-related rift systems in East Asia. A cold region beneath the Antarctic Peninsula is similar in spatial extent to that of a flat-subducted slab beneath the southern Andes, indicating a possible remnant of the Phoenix Plate, which was subducted prior to 10 Ma. The oceanic lithosphere generally thickens with increasing age, and the age–thickness correlation depends on the spreading rate of the ridge that formed the lithosphere. Significant flattening of the age–thickness curves is not observed for the mature oceanic lithosphere of the Antarctic Plate.
author2 National Institute of Polar Research Tokyo (NiPR)
Institut de physique du globe de Strasbourg (IPGS)
Université de Strasbourg (UNISTRA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
ANR-07-BLAN-0147,CASE-IPY,Concordia Antarctic Seismic Experiment (International Polar Year)(2007)
format Article in Journal/Newspaper
author An, Meijan
Wiens, Douglas
Zhao, Yue
Feng, Mei
Nyblade, Andrew
Kanao, Masaki
Li, Yuansheng
Maggi, Alessia
Lévêque, Jean-Jacques
author_facet An, Meijan
Wiens, Douglas
Zhao, Yue
Feng, Mei
Nyblade, Andrew
Kanao, Masaki
Li, Yuansheng
Maggi, Alessia
Lévêque, Jean-Jacques
author_sort An, Meijan
title Temperature, lithosphere-asthenosphere boundary, and heat flux beneath the Antarctic Plate inferred from seismic velocities
title_short Temperature, lithosphere-asthenosphere boundary, and heat flux beneath the Antarctic Plate inferred from seismic velocities
title_full Temperature, lithosphere-asthenosphere boundary, and heat flux beneath the Antarctic Plate inferred from seismic velocities
title_fullStr Temperature, lithosphere-asthenosphere boundary, and heat flux beneath the Antarctic Plate inferred from seismic velocities
title_full_unstemmed Temperature, lithosphere-asthenosphere boundary, and heat flux beneath the Antarctic Plate inferred from seismic velocities
title_sort temperature, lithosphere-asthenosphere boundary, and heat flux beneath the antarctic plate inferred from seismic velocities
publisher HAL CCSD
publishDate 2015
url https://hal.science/hal-01239984
https://hal.science/hal-01239984/document
https://hal.science/hal-01239984/file/2015JB011917.pdf
https://doi.org/10.1002/2015JB011917
genre Antarc*
Antarctic
Antarctic Peninsula
Antarctica
East Antarctica
West Antarctica
genre_facet Antarc*
Antarctic
Antarctic Peninsula
Antarctica
East Antarctica
West Antarctica
op_source ISSN: 0148-0227
EISSN: 2156-2202
Journal of Geophysical Research
https://hal.science/hal-01239984
Journal of Geophysical Research, 2015, ⟨10.1002/2015JB011917⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1002/2015JB011917
hal-01239984
https://hal.science/hal-01239984
https://hal.science/hal-01239984/document
https://hal.science/hal-01239984/file/2015JB011917.pdf
doi:10.1002/2015JB011917
op_rights http://hal.archives-ouvertes.fr/licences/copyright/
info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.1002/2015JB011917
container_title Journal of Geophysical Research: Solid Earth
container_volume 120
container_issue 12
container_start_page 8720
op_container_end_page 8742
_version_ 1810490896841441280