Metal and organic contaminants in marine invertebrates from Antarctica

Progress Code: completed Statement: Values provided in temporal and spatial coverage are approximate only. Metadata record for data from ASAC Project 1005 Metal and organic contaminants in marine invertebrates from Antarctica, field study of their concentrations, laboratory study of their toxicities...

Full description

Bibliographic Details
Other Authors: AADC (owner), AADC, DATA OFFICER (distributor), AADC, DATA OFFICER (custodian), AU/AADC > Australian Antarctic Data Centre, Australia (hasAssociationWith), Australian Antarctic Data Centre (publisher), Australian Antarctic Division (sponsor)
Format: Dataset
Language:unknown
Published: Australian Ocean Data Network
Subjects:
AMD
Online Access:https://researchdata.edu.au/metal-organic-contaminants-invertebrates-antarctica/2822277
Description
Summary:Progress Code: completed Statement: Values provided in temporal and spatial coverage are approximate only. Metadata record for data from ASAC Project 1005 Metal and organic contaminants in marine invertebrates from Antarctica, field study of their concentrations, laboratory study of their toxicities. See the link below for public details on this project. Data from this project are now unrecoverable. Several publications arising from the work are attached to this metadata record, and are available to AAD staff only. Taken from the referenced publications: Bioaccumulation of Cd, Pb, Cu and Zn in the Antarctic gammaridean amphipod Paramoera walkeri was investigated at Casey station. The main goals were to provide information on accumulation strategies of the organisms tested and to verify toxicokinetic models as a predictive tool. The organisms accumulated metals upon exposure and it was possible to estimate significant model parameters of two compartment and hyperbolic models. These models were successfully verified in a second toxicokinetic study. However, the application of hyperbolic models appears to be more promising as a predictive tool for metals in amphipods compared to compartment models, which have failed to adequately predict metal accumulation in experiments with increasing external exposures in previous studies. The following kinetic bioconcentration factors (BCFs) for the theoretical equilibrium were determined: 150-630 (Cd), 1600-7000 (Pb), 1700-3800 (Cu) and 670-2400 (Zn). We find decreasing BCFs with increasing external metal dosing but similar results for treatments with and without natural UV radiation and for the combined effect of different exposure regimes (single versus multiple metal exposure) and/or the amphipod collective involved (Beall versus Denison Island). A tentative estimation showed the following sequence if sensitivity of P. walkeri to an increase of soluble metal exposure: 0.2-3.0 micrograms Cd per litre, 0.12-0.25 micrograms Pb per litre, 0.9-3.0 micrograms Cu per litre and ...