Background regarding the sea-ice model configuration and forcings, and the use of sea-ice model output to identify potential habitat for Antarctic krill larvae

Progress Code: completed Statement: See the referenced papers for more information. Dates provided in temporal coverage are approximate only, and are representative only of the start time of the supporting project. Taken from the "Supporting Information" for the main paper. See the referen...

Full description

Bibliographic Details
Format: Dataset
Language:unknown
Published: Australian Ocean Data Network
Subjects:
AMD
Online Access:https://researchdata.edu.au/background-regarding-sea-krill-larvae/2820378
Description
Summary:Progress Code: completed Statement: See the referenced papers for more information. Dates provided in temporal coverage are approximate only, and are representative only of the start time of the supporting project. Taken from the "Supporting Information" for the main paper. See the referenced papers for more information. Our results are based on numerical simulation of Southern Ocean sea ice, conducted using the Los Alamos numerical sea-ice model CICE version 4.0 [CICE4; Bailey et al., 2010] configured in stand-alone mode on a 0.25 degree x 0.25 degree grid, extending to 45 degrees S, with 3-hourly output [Stevens, 2013]. The atmospheric forcing for CICE4 came from the hemispheric forecasting model Polar Limited Area Prediction Systems [Polar- LAPS; Adams, 2006] and ocean forcing from the global ocean general circulation model Australian Climate Ocean Model [AusCOM; Bi and Marsland, 2010]. The model is well-constrained in its representation of processes of sea ice formation and melt, and comparison with observed areal ice extent shows minimal deviations over the 1998-2003 period, particularly during winter [Stevens 2013]. Stevens [2013] evaluates the sensitivity of the model to the number of ice thickness categories. Sea ice thickness sensitivities in the CICE model are considered in detail in Hunke [2010, 2014]. For the warm climate scenario, changes were implemented that are consistent with the A1B scenario from the Fourth Assessment from the IPCC [Meehl et al., 2007]. This is a mid-range scenario that assumes rapid economic growth before introduction of new and more efficient technologies mid century. Specifically, the following changes were applied uniformly to the current climate forcing field for a single year: a 2 degrees C increase in air temperature, a 0.2 mm/day increase in rain, a 1.5% increase in cloud fraction, a -2.3 hPa change in surface air pressure, a 25% increase in wind, a 12 Wm-2 increase in long wave downward radiation and a 20% increase in humidity. Outputs and forcings from CICE4 that ...