Macromolecular data of diatoms exposed to Ocean Acidification - Mesocosm Experiments at Davis Station, Antarctica, 2014-2015

Progress Code: completed Purpose To understand Antarctic diatom species-specific macromolecular shifts in response to Ocean Acidification. Synchrotron based FTIR macromolecule profiles of 5 diatom species from the AAS_4026 ocean acidification project. Data represent the peak areas for wavenumbers re...

Full description

Bibliographic Details
Format: Dataset
Language:unknown
Published: Australian Ocean Data Network
Subjects:
AMD
Online Access:https://researchdata.edu.au/macromolecular-diatoms-exposed-2014-2015/2817843
Description
Summary:Progress Code: completed Purpose To understand Antarctic diatom species-specific macromolecular shifts in response to Ocean Acidification. Synchrotron based FTIR macromolecule profiles of 5 diatom species from the AAS_4026 ocean acidification project. Data represent the peak areas for wavenumbers related to key macromolecules. For details on methods see Duncan et al. (2021) New Phytologist. Experimental design and mesocosm set up Mesocosm set up and conditions were as described previously (Deppeler et al., 2018; Hancock et al., 2018). Briefly, a near-shore, natural Antarctic microbial community was collected from an ice-free area among broken fast ice approximately 1km offshore from Davis Station, Antarctica (68° 35ʹ S, 77° 58ʹ E) on 19 November 2014. This community was incubated in 6 x 650L polyurethane tanks (mesocosms) across a gradient of fCO2 levels (343, 506, 634, 953, 1140 and 1641 μatm; denoted M1 – M6). These fCO2 levels corresponded to pH values ranging from 8.17 to 7.57. Temperature was maintained at 0.0 °C ± 0.5 °C and the mesocosms were stirred continuously by a central auger (15 r.p.m.) for gentle mixing and covered with an air-tight lid. Irradiance was initially kept low (0.8 ± 0.2 μmol photons m-2s-1), while cell physiology was left to acclimate to increasing fCO2 levels (over 5 days). When target fCO2 levels were reached in all six mesocosms, light was gradually increased (days 5-8) to 89 ± 16 μmol photons m-2s-1 on a 19 h:5 h light:dark cycle, to mimic current natural conditions. To generate the gradient in carbonate chemistry, filtered seawater saturated with CO2 was added to five of the mesocosms. Daily measurements were taken to monitor pH and dissolved inorganic carbon (DIC). For details of fCO2 manipulations, analytical procedures and calculations see Deppeler et al., (2018). Samples for physiological and macromolecular measurements in this study were taken on day 18, at the end of the incubation period (Deppeler et al., 2018). Cell volume Cell volume was determined for selected taxa ...