MITgcm: regional simulation of the 2017/18 Tasman Sea marine heatwave v1.0

A regional ocean model simulation of the 2017/18 Tasman Sea marine heatwave was conducted with the Massachusetts Institute of Technology general circulation model (MITgcm; Marshall et al., 1997). A single 1/100° resolution simulation was run for the period 1 January 2016 to 30 April 2018 (28 months)...

Full description

Bibliographic Details
Other Authors: Australian Research Council (isFundedBy), Dr Jules Kajtar (hasCollector), Kajtar, Jules B. (hasCollector)
Format: Dataset
Language:unknown
Published: CLEX
Subjects:
Online Access:https://researchdata.edu.au/mitgcm-regional-simulation-heatwave-v10/1916349
https://doi.org/10.25914/GGHK-TD61
Description
Summary:A regional ocean model simulation of the 2017/18 Tasman Sea marine heatwave was conducted with the Massachusetts Institute of Technology general circulation model (MITgcm; Marshall et al., 1997). A single 1/100° resolution simulation was run for the period 1 January 2016 to 30 April 2018 (28 months) for the region. The horizontal resolution of ~1 km is sufficient to resolve the submesoscale field. The vertical grid consisted of 100 layers of varying thickness, with 5 m layers for the top 100 m, and then gradually increasing to 100 m layers beyond 1000 m depth. The maximum depth was 5844 m. The initial state and boundary conditions were from the Copernicus Marine Environment Monitoring Service (CMEMS) Operational Mercator global ocean analysis and forecast system, which is provided at 1/12° resolution (GLOBAL_ANALYSIS_FORECAST_PHY_001_024). Atmospheric conditions throughout the simulation were from the European Centre for Medium-Range Weather Forecasts (ECMWF) atmospheric analysis. Other details of the simulation follow those given by Bachman et al. (2017). The key variables for the analysis (and provided here) are: temperature, salinity, and vertical velocity. Full heat budget terms were computed only for the periods 2016-11-01 to 2017-04-01 and 2017-11-01 to 2018-04-01. References Marshall, J., Adcroft, A., Hill, C., Perelman, L., Heisey, C., 1997. A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res. Ocean., 102, 5753–5766. doi:10.1029/96JC02775 Bachman, S.D., Taylor, J.R., Adams, K.A., Hosegood, P.J., 2017. Mesoscale and submesoscale effects on mixed layer depth in the Southern Ocean. J. Phys. Oceanogr., 47, 2173–2188. doi:10.1175/JPO-D-17-0034.1 Acknowledgements We thank the Australian Research Council Centre of Excellence for Climate Extremes (CE170100023) for ongoing support. The National Computational Infrastructure, which is supported by the Australian Government, was utilised for processing and analysing the data.