Intercomparison of Four Microphysics Schemes in Simulating Persistent Arctic Mixed-Phase Stratocumulus Clouds

Persistent Arctic mixed-phase stratocumulus clouds (AMPS) are important to the surface radiation budget of the Arctic. Their presence produces warming within the boundary layer and at the surface and inaccurately forecasting AMPS can lead to large, erroneous temperature forecasts. A Large Eddy Simul...

Full description

Bibliographic Details
Main Author: Cleveland, Zachary A.
Format: Text
Language:unknown
Published: AFIT Scholar 2022
Subjects:
Online Access:https://scholar.afit.edu/etd/5333
https://scholar.afit.edu/cgi/viewcontent.cgi?article=6335&context=etd
id ftairforceinstec:oai:scholar.afit.edu:etd-6335
record_format openpolar
spelling ftairforceinstec:oai:scholar.afit.edu:etd-6335 2023-05-15T14:50:26+02:00 Intercomparison of Four Microphysics Schemes in Simulating Persistent Arctic Mixed-Phase Stratocumulus Clouds Cleveland, Zachary A. 2022-03-01T08:00:00Z application/pdf https://scholar.afit.edu/etd/5333 https://scholar.afit.edu/cgi/viewcontent.cgi?article=6335&context=etd unknown AFIT Scholar https://scholar.afit.edu/etd/5333 https://scholar.afit.edu/cgi/viewcontent.cgi?article=6335&context=etd Theses and Dissertations Arctic mixed-phase stratocumulus clouds Atmospheric Sciences text 2022 ftairforceinstec 2022-07-02T17:14:03Z Persistent Arctic mixed-phase stratocumulus clouds (AMPS) are important to the surface radiation budget of the Arctic. Their presence produces warming within the boundary layer and at the surface and inaccurately forecasting AMPS can lead to large, erroneous temperature forecasts. A Large Eddy Simulation of a case study of a persistent AMPS cloud was conducted using the Advanced Research Weather Research and Forecasting (WRF-ARW) model. The case examined occurred near Oliktok Point, AK between 26 and 27 April, 2017. The produced cloud pattern and properties of four different microphysics schemes -- P3, Thompson, Morrison, and WSM6 -- are compared to observations. Results show that the Thompson scheme was able to best simulate observed conditions as a result of fewer aerosols acting as ice nucleating particles, which allowed the production of more liquid water within the cloud layer. Thompson was the only parameterization scheme to produce significant cloud liquid water, which resulted in additional cloud top radiative cooling, continued coupling with the surface, and sustainment of the cloud layer. The lack of cloud liquid water produced in the other three schemes resulted in the early dissipation of their cloud layers and, consequently, stronger surface cooling, which led to production of a surface-based inversion layer and a decoupling of the cloud layer. Due to the Thompson scheme's more accurate representation of the cloud structure, it also captured surface and cloud top temperatures which aligned more closely to observations. Text Arctic AFTI Scholar (Air Force Institute of Technology) Arctic Morrison ENVELOPE(-63.533,-63.533,-66.167,-66.167)
institution Open Polar
collection AFTI Scholar (Air Force Institute of Technology)
op_collection_id ftairforceinstec
language unknown
topic Arctic mixed-phase stratocumulus clouds
Atmospheric Sciences
spellingShingle Arctic mixed-phase stratocumulus clouds
Atmospheric Sciences
Cleveland, Zachary A.
Intercomparison of Four Microphysics Schemes in Simulating Persistent Arctic Mixed-Phase Stratocumulus Clouds
topic_facet Arctic mixed-phase stratocumulus clouds
Atmospheric Sciences
description Persistent Arctic mixed-phase stratocumulus clouds (AMPS) are important to the surface radiation budget of the Arctic. Their presence produces warming within the boundary layer and at the surface and inaccurately forecasting AMPS can lead to large, erroneous temperature forecasts. A Large Eddy Simulation of a case study of a persistent AMPS cloud was conducted using the Advanced Research Weather Research and Forecasting (WRF-ARW) model. The case examined occurred near Oliktok Point, AK between 26 and 27 April, 2017. The produced cloud pattern and properties of four different microphysics schemes -- P3, Thompson, Morrison, and WSM6 -- are compared to observations. Results show that the Thompson scheme was able to best simulate observed conditions as a result of fewer aerosols acting as ice nucleating particles, which allowed the production of more liquid water within the cloud layer. Thompson was the only parameterization scheme to produce significant cloud liquid water, which resulted in additional cloud top radiative cooling, continued coupling with the surface, and sustainment of the cloud layer. The lack of cloud liquid water produced in the other three schemes resulted in the early dissipation of their cloud layers and, consequently, stronger surface cooling, which led to production of a surface-based inversion layer and a decoupling of the cloud layer. Due to the Thompson scheme's more accurate representation of the cloud structure, it also captured surface and cloud top temperatures which aligned more closely to observations.
format Text
author Cleveland, Zachary A.
author_facet Cleveland, Zachary A.
author_sort Cleveland, Zachary A.
title Intercomparison of Four Microphysics Schemes in Simulating Persistent Arctic Mixed-Phase Stratocumulus Clouds
title_short Intercomparison of Four Microphysics Schemes in Simulating Persistent Arctic Mixed-Phase Stratocumulus Clouds
title_full Intercomparison of Four Microphysics Schemes in Simulating Persistent Arctic Mixed-Phase Stratocumulus Clouds
title_fullStr Intercomparison of Four Microphysics Schemes in Simulating Persistent Arctic Mixed-Phase Stratocumulus Clouds
title_full_unstemmed Intercomparison of Four Microphysics Schemes in Simulating Persistent Arctic Mixed-Phase Stratocumulus Clouds
title_sort intercomparison of four microphysics schemes in simulating persistent arctic mixed-phase stratocumulus clouds
publisher AFIT Scholar
publishDate 2022
url https://scholar.afit.edu/etd/5333
https://scholar.afit.edu/cgi/viewcontent.cgi?article=6335&context=etd
long_lat ENVELOPE(-63.533,-63.533,-66.167,-66.167)
geographic Arctic
Morrison
geographic_facet Arctic
Morrison
genre Arctic
genre_facet Arctic
op_source Theses and Dissertations
op_relation https://scholar.afit.edu/etd/5333
https://scholar.afit.edu/cgi/viewcontent.cgi?article=6335&context=etd
_version_ 1766321470123802624