Soluble iron dust export in the high altitude Saharan Air Layer

Every summer huge amounts of desert dust particles are exported from the hyperarid subtropical Sahara to the North Atlantic the so-called Saharan Air Layer (SAL), a dry, warm and dust-laden corridor that expands from the North African coast (1-5 km.a.s.I.) to the Americas above the marine boundary l...

Full description

Bibliographic Details
Published in:Atmospheric Environment
Main Authors: Ravelo Pérez, Lidia María, Rodríguez González, Sergio, Galindo, Luis, García, María Isabel, Alastuey, Andrés, López Solano, Javier
Format: Article in Journal/Newspaper
Language:English
Published: Elsevier 2016
Subjects:
Online Access:https://hdl.handle.net/20.500.11765/7502
Description
Summary:Every summer huge amounts of desert dust particles are exported from the hyperarid subtropical Sahara to the North Atlantic the so-called Saharan Air Layer (SAL), a dry, warm and dust-laden corridor that expands from the North African coast (1-5 km.a.s.I.) to the Americas above the marine boundary layer. Because of the potential impact of the dust deposited on the ocean on marine biogeochemistry and climate, we studied the Fe solubility (in seawater) of atmospheric aerosols samples directly collected in the SAL off the North African coast, i.e, the fresh aerosols recently exported from the Sahara in the SAL. The aerosol sampling was performed at 2400 m.a.s.l. in Izana observatory in Tenerife island. In the total aerosols, we found low Fe concentrations and high fractional Fe solubility (FFS-2%) in the North Atlantic free troposphere airflows and high Fe concentrations and low FFS (-0.7%) within the SAL; the resulting FFS versus total dust (or total Fe) plot shows a hyperbolic trend attributed to the conservative mixing of 'fine combustion aerosols' and 'lithogenic mineral dust'. We then focused on the soluble Fe in the SAL Our results indicate that 70% of soluble Fe is associated with the dissolution of submicron dust particles, probably involving Fe-bearing clays. We found a FFS of submicron dust (-6%) higher than that typically observed in submicron particles of soil dust samples (<1%). This study is part of the project AEROATLAN e 2015-66229 -, funded by the Ministry of Economy and Competitiveness of Spain. M.I. García holds a research grant e TESIS20120054 e co-funded by the Canarian Agency for Research, Innovation and Information Society and the European Social Fund.