Wei Haas 2009 Geochemical Investigation of Weathering in a High Arctic Watershed and Provenance of Sediments in Kongressvatnet, Svalbard, Norway

Abstract: This study uses changes in the chemistry and mineralogy of lake and surface sediments in a small lake in Kongress Valley (Kongressdalen), to interpret Late Holocene climate change in Western Spitsbergen, Svalbard. Changes in clay mineralogy across an inactive outwash fan (Black Fan) in the...

Full description

Bibliographic Details
Format: Dataset
Language:unknown
Published: Arctic Data Center 2013
Subjects:
Online Access:https://search.dataone.org/view/urn:uuid:7caf7013-15ac-412e-bb9f-4b25f6289570
id dataone:urn:uuid:7caf7013-15ac-412e-bb9f-4b25f6289570
record_format openpolar
institution Open Polar
collection Arctic Data Center (via DataONE)
op_collection_id dataone:urn:node:ARCTIC
language unknown
topic EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SEDIMENTS
EARTH SCIENCE > OCEANS > OCEAN TEMPERATURE > WATER TEMPERATURE
EARTH SCIENCE > TERRESTRIAL HYDROSPHERE > GLACIERS/ICE SHEETS > GLACIER MASS BALANCE/ICE SHEET MASS BALANCE
EARTH SCIENCE > PALEOCLIMATE > OCEAN/LAKE RECORDS > LAKE LEVELS
EARTH SCIENCE > PALEOCLIMATE > LAND RECORDS > SEDIMENTS
EARTH SCIENCE > PALEOCLIMATE > OCEAN/LAKE RECORDS > SEDIMENTS
EARTH SCIENCE > PALEOCLIMATE > OCEAN/LAKE RECORDS > VARVE DEPOSITS
EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > DEGRADATION
EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SEDIMENT TRANSPORT
EARTH SCIENCE > CRYOSPHERE > GLACIERS/ICE SHEETS > GLACIER MASS BALANCE/ICE SHEET MASS BALANCE
EARTH SCIENCE > OCEANS > MARINE SEDIMENTS > SEDIMENT TRANSPORT
EARTH SCIENCE > OCEANS > MARINE SEDIMENTS > TURBIDITY
EARTH SCIENCE > LAND SURFACE > LAND TEMPERATURE > LAND SURFACE TEMPERATURE
EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > ENTRAINMENT
EARTH SCIENCE > TERRESTRIAL HYDROSPHERE > GLACIERS/ICE SHEETS > GLACIERS
EARTH SCIENCE > CRYOSPHERE > GLACIERS/ICE SHEETS > GLACIERS
EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SEDIMENTATION
EARTH SCIENCE > CRYOSPHERE > FROZEN GROUND > SOIL TEMPERATURE
EARTH SCIENCE > CRYOSPHERE > FROZEN GROUND > PERIGLACIAL PROCESSES
EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SUSPENDED SOLIDS
IN SITU/LABORATORY INSTRUMENTS > SAMPLERS > GRABBERS/TRAPS/COLLECTORS > SEDIMENT TRAPS
IN SITU/LABORATORY INSTRUMENTS > CORERS > SEDIMENT CORERS
IN SITU/LABORATORY INSTRUMENTS > CONDUCTIVITY SENSORS > CONDUCTIVITY METERS
EARTH REMOTE SENSING INSTRUMENTS > PASSIVE REMOTE SENSING > PHOTON/OPTICAL DETECTORS > CAMERAS > CAMERAS
EARTH REMOTE SENSING INSTRUMENTS > PASSIVE REMOTE SENSING > PROFILERS/SOUNDERS > TEMPERATURE PROFILERS
IN SITU/LABORATORY INSTRUMENTS > RECORDERS/LOGGERS > TEMPERATURE LOGGERS
IN SITU/LABORATORY INSTRUMENTS > GAUGES > STREAM GAUGES
EARTH REMOTE SENSING INSTRUMENTS > PASSIVE REMOTE SENSING > POSITIONING/NAVIGATION > GPS > GPS > GLOBAL POSITIONING SYSTEM
EARTH REMOTE SENSING INSTRUMENTS > ACTIVE REMOTE SENSING > PROFILERS/SOUNDERS > ACOUSTIC SOUNDERS > ECHO SOUNDERS
IN SITU/LABORATORY INSTRUMENTS > PROBES > PROBES
IN SITU/LABORATORY INSTRUMENTS > CORERS > CORING DEVICES
IN SITU/LABORATORY INSTRUMENTS > PROBES > STEEL MEASURING TAPE
IN SITU/LABORATORY INSTRUMENTS > CURRENT/WIND METERS > CURRENT METERS
MANNED FIELD STATION
HOURLY TO DAILY
DAILY TO WEEKLY
ANNUAL
1 MINUTE TO 1 HOUR
MONTHLY TO ANNUAL
WEEKLY TO MONTHLY
spellingShingle EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SEDIMENTS
EARTH SCIENCE > OCEANS > OCEAN TEMPERATURE > WATER TEMPERATURE
EARTH SCIENCE > TERRESTRIAL HYDROSPHERE > GLACIERS/ICE SHEETS > GLACIER MASS BALANCE/ICE SHEET MASS BALANCE
EARTH SCIENCE > PALEOCLIMATE > OCEAN/LAKE RECORDS > LAKE LEVELS
EARTH SCIENCE > PALEOCLIMATE > LAND RECORDS > SEDIMENTS
EARTH SCIENCE > PALEOCLIMATE > OCEAN/LAKE RECORDS > SEDIMENTS
EARTH SCIENCE > PALEOCLIMATE > OCEAN/LAKE RECORDS > VARVE DEPOSITS
EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > DEGRADATION
EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SEDIMENT TRANSPORT
EARTH SCIENCE > CRYOSPHERE > GLACIERS/ICE SHEETS > GLACIER MASS BALANCE/ICE SHEET MASS BALANCE
EARTH SCIENCE > OCEANS > MARINE SEDIMENTS > SEDIMENT TRANSPORT
EARTH SCIENCE > OCEANS > MARINE SEDIMENTS > TURBIDITY
EARTH SCIENCE > LAND SURFACE > LAND TEMPERATURE > LAND SURFACE TEMPERATURE
EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > ENTRAINMENT
EARTH SCIENCE > TERRESTRIAL HYDROSPHERE > GLACIERS/ICE SHEETS > GLACIERS
EARTH SCIENCE > CRYOSPHERE > GLACIERS/ICE SHEETS > GLACIERS
EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SEDIMENTATION
EARTH SCIENCE > CRYOSPHERE > FROZEN GROUND > SOIL TEMPERATURE
EARTH SCIENCE > CRYOSPHERE > FROZEN GROUND > PERIGLACIAL PROCESSES
EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SUSPENDED SOLIDS
IN SITU/LABORATORY INSTRUMENTS > SAMPLERS > GRABBERS/TRAPS/COLLECTORS > SEDIMENT TRAPS
IN SITU/LABORATORY INSTRUMENTS > CORERS > SEDIMENT CORERS
IN SITU/LABORATORY INSTRUMENTS > CONDUCTIVITY SENSORS > CONDUCTIVITY METERS
EARTH REMOTE SENSING INSTRUMENTS > PASSIVE REMOTE SENSING > PHOTON/OPTICAL DETECTORS > CAMERAS > CAMERAS
EARTH REMOTE SENSING INSTRUMENTS > PASSIVE REMOTE SENSING > PROFILERS/SOUNDERS > TEMPERATURE PROFILERS
IN SITU/LABORATORY INSTRUMENTS > RECORDERS/LOGGERS > TEMPERATURE LOGGERS
IN SITU/LABORATORY INSTRUMENTS > GAUGES > STREAM GAUGES
EARTH REMOTE SENSING INSTRUMENTS > PASSIVE REMOTE SENSING > POSITIONING/NAVIGATION > GPS > GPS > GLOBAL POSITIONING SYSTEM
EARTH REMOTE SENSING INSTRUMENTS > ACTIVE REMOTE SENSING > PROFILERS/SOUNDERS > ACOUSTIC SOUNDERS > ECHO SOUNDERS
IN SITU/LABORATORY INSTRUMENTS > PROBES > PROBES
IN SITU/LABORATORY INSTRUMENTS > CORERS > CORING DEVICES
IN SITU/LABORATORY INSTRUMENTS > PROBES > STEEL MEASURING TAPE
IN SITU/LABORATORY INSTRUMENTS > CURRENT/WIND METERS > CURRENT METERS
MANNED FIELD STATION
HOURLY TO DAILY
DAILY TO WEEKLY
ANNUAL
1 MINUTE TO 1 HOUR
MONTHLY TO ANNUAL
WEEKLY TO MONTHLY
Wei Haas 2009 Geochemical Investigation of Weathering in a High Arctic Watershed and Provenance of Sediments in Kongressvatnet, Svalbard, Norway
topic_facet EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SEDIMENTS
EARTH SCIENCE > OCEANS > OCEAN TEMPERATURE > WATER TEMPERATURE
EARTH SCIENCE > TERRESTRIAL HYDROSPHERE > GLACIERS/ICE SHEETS > GLACIER MASS BALANCE/ICE SHEET MASS BALANCE
EARTH SCIENCE > PALEOCLIMATE > OCEAN/LAKE RECORDS > LAKE LEVELS
EARTH SCIENCE > PALEOCLIMATE > LAND RECORDS > SEDIMENTS
EARTH SCIENCE > PALEOCLIMATE > OCEAN/LAKE RECORDS > SEDIMENTS
EARTH SCIENCE > PALEOCLIMATE > OCEAN/LAKE RECORDS > VARVE DEPOSITS
EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > DEGRADATION
EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SEDIMENT TRANSPORT
EARTH SCIENCE > CRYOSPHERE > GLACIERS/ICE SHEETS > GLACIER MASS BALANCE/ICE SHEET MASS BALANCE
EARTH SCIENCE > OCEANS > MARINE SEDIMENTS > SEDIMENT TRANSPORT
EARTH SCIENCE > OCEANS > MARINE SEDIMENTS > TURBIDITY
EARTH SCIENCE > LAND SURFACE > LAND TEMPERATURE > LAND SURFACE TEMPERATURE
EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > ENTRAINMENT
EARTH SCIENCE > TERRESTRIAL HYDROSPHERE > GLACIERS/ICE SHEETS > GLACIERS
EARTH SCIENCE > CRYOSPHERE > GLACIERS/ICE SHEETS > GLACIERS
EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SEDIMENTATION
EARTH SCIENCE > CRYOSPHERE > FROZEN GROUND > SOIL TEMPERATURE
EARTH SCIENCE > CRYOSPHERE > FROZEN GROUND > PERIGLACIAL PROCESSES
EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SUSPENDED SOLIDS
IN SITU/LABORATORY INSTRUMENTS > SAMPLERS > GRABBERS/TRAPS/COLLECTORS > SEDIMENT TRAPS
IN SITU/LABORATORY INSTRUMENTS > CORERS > SEDIMENT CORERS
IN SITU/LABORATORY INSTRUMENTS > CONDUCTIVITY SENSORS > CONDUCTIVITY METERS
EARTH REMOTE SENSING INSTRUMENTS > PASSIVE REMOTE SENSING > PHOTON/OPTICAL DETECTORS > CAMERAS > CAMERAS
EARTH REMOTE SENSING INSTRUMENTS > PASSIVE REMOTE SENSING > PROFILERS/SOUNDERS > TEMPERATURE PROFILERS
IN SITU/LABORATORY INSTRUMENTS > RECORDERS/LOGGERS > TEMPERATURE LOGGERS
IN SITU/LABORATORY INSTRUMENTS > GAUGES > STREAM GAUGES
EARTH REMOTE SENSING INSTRUMENTS > PASSIVE REMOTE SENSING > POSITIONING/NAVIGATION > GPS > GPS > GLOBAL POSITIONING SYSTEM
EARTH REMOTE SENSING INSTRUMENTS > ACTIVE REMOTE SENSING > PROFILERS/SOUNDERS > ACOUSTIC SOUNDERS > ECHO SOUNDERS
IN SITU/LABORATORY INSTRUMENTS > PROBES > PROBES
IN SITU/LABORATORY INSTRUMENTS > CORERS > CORING DEVICES
IN SITU/LABORATORY INSTRUMENTS > PROBES > STEEL MEASURING TAPE
IN SITU/LABORATORY INSTRUMENTS > CURRENT/WIND METERS > CURRENT METERS
MANNED FIELD STATION
HOURLY TO DAILY
DAILY TO WEEKLY
ANNUAL
1 MINUTE TO 1 HOUR
MONTHLY TO ANNUAL
WEEKLY TO MONTHLY
description Abstract: This study uses changes in the chemistry and mineralogy of lake and surface sediments in a small lake in Kongress Valley (Kongressdalen), to interpret Late Holocene climate change in Western Spitsbergen, Svalbard. Changes in clay mineralogy across an inactive outwash fan (Black Fan) in the valley reflect weathering since the fan’s formation during the Little Ice Age (LIA) (1550-1920). X-Ray Diffraction analysis of clay samples from the meltwater channels and the Kapp Starostin rocks that compose the fan reveal a strong 10 Å peak, unaffected by ethylene glycol solvation or heating to 375°C and 550 °C, indicative of illite. However, samples collected from vegetated debris flows between the meltwater channels reveal a diminished 10 Å phase and a slightly expandable peak at approximately 14 Å, unaffected by magnesium and glycerol saturation (d 060 of 1.54 Å), indicative of vermiculite. The inverse relationship between these peaks reflects the weathering of illite to vermiculite, suggesting an early period of Kapp Starostin Fm. deposition subsequently eroded by meltwater from Kongressbreen (glacier) during the LIA. Changes in lake sediment chemistry should reflect changing sources of sediment inflow as meltwater from an advancing ice activated the Black Fan. X-Ray Fluorescence analysis of the White and Black Fan, which are the only sources of sediment inflow to the lake, reveals that the Black Fan sediments have greater concentrations of K2O, Fe2O3,Zr, and Cr, while the White Fan is characterized by higher concentrations of MgO, CaO, Sr, and U. However, analysis of sediment cores from the central part of the lake reveals a chemical composition that resembles only that of the White Fan sediment, indicating almost no Black Fan input into Kongressvatnet. The most likely hypothesis to explain this absence is that Kongressbreen was a cold-based glacier and therefore did not produce fine glacial flour from scour of bedrock. Despite the dominant White Fan signature in the core sediments, ITRAX Scanning XRay Fluorescence analysis reveals significant variations in core chemistry with depth, which is likely due to changes in climate. Periodic, massive high calcium layers, lacking internal laminations characterize the upper 200 mm of the core, which correlates using MS to cores dated to the LIA (Guilizzoni et al., 2006). Preliminary SEM analysis reveals the presence of euhedral, sharp-edged rhombohedra and fibrous needles of calcite, high-Mg calcite, and dolomite, suggesting the precipitation of carbonate. The current supersaturation of Kongressvatnet waters below the chemocline with respect to calcite further supports this hypothesis. Alternatively, periods of extended ice cover during which the formation of lake ice concentrates the calcium in the underlying lake water, and may result in the formation of cryogenic calcite. Anomalous peaks in iron and sulfur characterize the lower core (300-400 mm), which MS correlations indicate corresponds to the Medieval Warm Period (Guilizzoni et al., 2006). An increase in organic terriginous inflow during this period likely spurs the activity of sulfur reducing bacteria, resulting in reducing conditions and the precipitation of iron sulfides. This analysis suggests that although provenance cannot be used in Kongressvatnet to constrain the timing of the Little Ice Age, changes in climate are intimately associated with fluctuations in lake chemistry and thelake’s biogeochemical cycles, providing the opportunity to interpret past climate change from lake sediment chemistry.
format Dataset
title Wei Haas 2009 Geochemical Investigation of Weathering in a High Arctic Watershed and Provenance of Sediments in Kongressvatnet, Svalbard, Norway
title_short Wei Haas 2009 Geochemical Investigation of Weathering in a High Arctic Watershed and Provenance of Sediments in Kongressvatnet, Svalbard, Norway
title_full Wei Haas 2009 Geochemical Investigation of Weathering in a High Arctic Watershed and Provenance of Sediments in Kongressvatnet, Svalbard, Norway
title_fullStr Wei Haas 2009 Geochemical Investigation of Weathering in a High Arctic Watershed and Provenance of Sediments in Kongressvatnet, Svalbard, Norway
title_full_unstemmed Wei Haas 2009 Geochemical Investigation of Weathering in a High Arctic Watershed and Provenance of Sediments in Kongressvatnet, Svalbard, Norway
title_sort wei haas 2009 geochemical investigation of weathering in a high arctic watershed and provenance of sediments in kongressvatnet, svalbard, norway
publisher Arctic Data Center
publishDate 2013
url https://search.dataone.org/view/urn:uuid:7caf7013-15ac-412e-bb9f-4b25f6289570
op_coverage ENVELOPE(13.554,14.104,78.081,77.943)
long_lat ENVELOPE(13.828,13.828,78.093,78.093)
ENVELOPE(14.014,14.014,78.024,78.024)
ENVELOPE(13.931,13.931,78.022,78.022)
ENVELOPE(13.554,14.104,78.081,77.943)
geographic Arctic
Kapp Starostin
Kongressdalen
Kongressvatnet
Norway
Svalbard
geographic_facet Arctic
Kapp Starostin
Kongressdalen
Kongressvatnet
Norway
Svalbard
genre Arctic
Climate change
Cold-based glacier
glacier
glacier
Ice Sheet
Svalbard
Spitsbergen
genre_facet Arctic
Climate change
Cold-based glacier
glacier
glacier
Ice Sheet
Svalbard
Spitsbergen
_version_ 1800870203609841664
spelling dataone:urn:uuid:7caf7013-15ac-412e-bb9f-4b25f6289570 2024-06-03T18:46:43+00:00 Wei Haas 2009 Geochemical Investigation of Weathering in a High Arctic Watershed and Provenance of Sediments in Kongressvatnet, Svalbard, Norway ENVELOPE(13.554,14.104,78.081,77.943) 2013-11-08T22:17:52Z https://search.dataone.org/view/urn:uuid:7caf7013-15ac-412e-bb9f-4b25f6289570 unknown Arctic Data Center EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SEDIMENTS EARTH SCIENCE > OCEANS > OCEAN TEMPERATURE > WATER TEMPERATURE EARTH SCIENCE > TERRESTRIAL HYDROSPHERE > GLACIERS/ICE SHEETS > GLACIER MASS BALANCE/ICE SHEET MASS BALANCE EARTH SCIENCE > PALEOCLIMATE > OCEAN/LAKE RECORDS > LAKE LEVELS EARTH SCIENCE > PALEOCLIMATE > LAND RECORDS > SEDIMENTS EARTH SCIENCE > PALEOCLIMATE > OCEAN/LAKE RECORDS > SEDIMENTS EARTH SCIENCE > PALEOCLIMATE > OCEAN/LAKE RECORDS > VARVE DEPOSITS EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > DEGRADATION EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SEDIMENT TRANSPORT EARTH SCIENCE > CRYOSPHERE > GLACIERS/ICE SHEETS > GLACIER MASS BALANCE/ICE SHEET MASS BALANCE EARTH SCIENCE > OCEANS > MARINE SEDIMENTS > SEDIMENT TRANSPORT EARTH SCIENCE > OCEANS > MARINE SEDIMENTS > TURBIDITY EARTH SCIENCE > LAND SURFACE > LAND TEMPERATURE > LAND SURFACE TEMPERATURE EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > ENTRAINMENT EARTH SCIENCE > TERRESTRIAL HYDROSPHERE > GLACIERS/ICE SHEETS > GLACIERS EARTH SCIENCE > CRYOSPHERE > GLACIERS/ICE SHEETS > GLACIERS EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SEDIMENTATION EARTH SCIENCE > CRYOSPHERE > FROZEN GROUND > SOIL TEMPERATURE EARTH SCIENCE > CRYOSPHERE > FROZEN GROUND > PERIGLACIAL PROCESSES EARTH SCIENCE > LAND SURFACE > EROSION/SEDIMENTATION > SUSPENDED SOLIDS IN SITU/LABORATORY INSTRUMENTS > SAMPLERS > GRABBERS/TRAPS/COLLECTORS > SEDIMENT TRAPS IN SITU/LABORATORY INSTRUMENTS > CORERS > SEDIMENT CORERS IN SITU/LABORATORY INSTRUMENTS > CONDUCTIVITY SENSORS > CONDUCTIVITY METERS EARTH REMOTE SENSING INSTRUMENTS > PASSIVE REMOTE SENSING > PHOTON/OPTICAL DETECTORS > CAMERAS > CAMERAS EARTH REMOTE SENSING INSTRUMENTS > PASSIVE REMOTE SENSING > PROFILERS/SOUNDERS > TEMPERATURE PROFILERS IN SITU/LABORATORY INSTRUMENTS > RECORDERS/LOGGERS > TEMPERATURE LOGGERS IN SITU/LABORATORY INSTRUMENTS > GAUGES > STREAM GAUGES EARTH REMOTE SENSING INSTRUMENTS > PASSIVE REMOTE SENSING > POSITIONING/NAVIGATION > GPS > GPS > GLOBAL POSITIONING SYSTEM EARTH REMOTE SENSING INSTRUMENTS > ACTIVE REMOTE SENSING > PROFILERS/SOUNDERS > ACOUSTIC SOUNDERS > ECHO SOUNDERS IN SITU/LABORATORY INSTRUMENTS > PROBES > PROBES IN SITU/LABORATORY INSTRUMENTS > CORERS > CORING DEVICES IN SITU/LABORATORY INSTRUMENTS > PROBES > STEEL MEASURING TAPE IN SITU/LABORATORY INSTRUMENTS > CURRENT/WIND METERS > CURRENT METERS MANNED FIELD STATION HOURLY TO DAILY DAILY TO WEEKLY ANNUAL 1 MINUTE TO 1 HOUR MONTHLY TO ANNUAL WEEKLY TO MONTHLY Dataset 2013 dataone:urn:node:ARCTIC 2024-06-03T18:06:29Z Abstract: This study uses changes in the chemistry and mineralogy of lake and surface sediments in a small lake in Kongress Valley (Kongressdalen), to interpret Late Holocene climate change in Western Spitsbergen, Svalbard. Changes in clay mineralogy across an inactive outwash fan (Black Fan) in the valley reflect weathering since the fan’s formation during the Little Ice Age (LIA) (1550-1920). X-Ray Diffraction analysis of clay samples from the meltwater channels and the Kapp Starostin rocks that compose the fan reveal a strong 10 Å peak, unaffected by ethylene glycol solvation or heating to 375°C and 550 °C, indicative of illite. However, samples collected from vegetated debris flows between the meltwater channels reveal a diminished 10 Å phase and a slightly expandable peak at approximately 14 Å, unaffected by magnesium and glycerol saturation (d 060 of 1.54 Å), indicative of vermiculite. The inverse relationship between these peaks reflects the weathering of illite to vermiculite, suggesting an early period of Kapp Starostin Fm. deposition subsequently eroded by meltwater from Kongressbreen (glacier) during the LIA. Changes in lake sediment chemistry should reflect changing sources of sediment inflow as meltwater from an advancing ice activated the Black Fan. X-Ray Fluorescence analysis of the White and Black Fan, which are the only sources of sediment inflow to the lake, reveals that the Black Fan sediments have greater concentrations of K2O, Fe2O3,Zr, and Cr, while the White Fan is characterized by higher concentrations of MgO, CaO, Sr, and U. However, analysis of sediment cores from the central part of the lake reveals a chemical composition that resembles only that of the White Fan sediment, indicating almost no Black Fan input into Kongressvatnet. The most likely hypothesis to explain this absence is that Kongressbreen was a cold-based glacier and therefore did not produce fine glacial flour from scour of bedrock. Despite the dominant White Fan signature in the core sediments, ITRAX Scanning XRay Fluorescence analysis reveals significant variations in core chemistry with depth, which is likely due to changes in climate. Periodic, massive high calcium layers, lacking internal laminations characterize the upper 200 mm of the core, which correlates using MS to cores dated to the LIA (Guilizzoni et al., 2006). Preliminary SEM analysis reveals the presence of euhedral, sharp-edged rhombohedra and fibrous needles of calcite, high-Mg calcite, and dolomite, suggesting the precipitation of carbonate. The current supersaturation of Kongressvatnet waters below the chemocline with respect to calcite further supports this hypothesis. Alternatively, periods of extended ice cover during which the formation of lake ice concentrates the calcium in the underlying lake water, and may result in the formation of cryogenic calcite. Anomalous peaks in iron and sulfur characterize the lower core (300-400 mm), which MS correlations indicate corresponds to the Medieval Warm Period (Guilizzoni et al., 2006). An increase in organic terriginous inflow during this period likely spurs the activity of sulfur reducing bacteria, resulting in reducing conditions and the precipitation of iron sulfides. This analysis suggests that although provenance cannot be used in Kongressvatnet to constrain the timing of the Little Ice Age, changes in climate are intimately associated with fluctuations in lake chemistry and thelake’s biogeochemical cycles, providing the opportunity to interpret past climate change from lake sediment chemistry. Dataset Arctic Climate change Cold-based glacier glacier glacier Ice Sheet Svalbard Spitsbergen Arctic Data Center (via DataONE) Arctic Kapp Starostin ENVELOPE(13.828,13.828,78.093,78.093) Kongressdalen ENVELOPE(14.014,14.014,78.024,78.024) Kongressvatnet ENVELOPE(13.931,13.931,78.022,78.022) Norway Svalbard ENVELOPE(13.554,14.104,78.081,77.943)